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ABSTRACT

Electric Arc Furnaces use electric power to melt steel. The amount of power delivered to the
scrap metal is controlled by positioning three large electrodes. A Neural Network control system can
learn to predict the relationships between electrode position and stability of furnace operation. Real-
time adaption to changes in furnace conditions enables the system to increase productivity while
reducing furnace and electrode wear, lowering power consumption, and achieving an unprecedented
smooth melt. The result of Neural Network control is a savings of millions of dollars per year per
furnace.

Keywords: Steel, Neural network, Process control, Real-time adaption, Electric power, Predictive
control, Chaotic systems.

I. INTRODUCTION

To control an Electric Arc Furnace is to control a lightning storm. Tens of megawatts of power
are violently delivered into scrap metal through huge carbon electrodes weighing thousands of
pounds. Effective positioning of the electrodes is essential for proper furnace operation. However,
due to the complex, unbalanced three-phase nature of Electric Arc Furnace circuitry and
oversimplified, often incorrect system models, electrode regulators have historically achieved rather
crude furnace control. In two previous papers, we have identified flaws in prior Electric Arc Furnace
control schemes and suggested how these probleme-might-he overcome with Neural Network
techniques. Here, we will present quantative pperasmance messits of the Intelligent Arc Furnace™
(IAF™) Regulator and analyze qualitatively hoy the-Nétital Ndtwrk improved furnace operation.

In August, 1990, Milltech-HOH (now a sgster comparny o1 meural Aonplications Corporation) and
North Star Steel - lowa, agreed to research the Fprcauen ol Hgulal Network techniques to the closed-
loop process control of an Electric Arc Furnace. [Dhe vbér hferJin Sentamber, 1991, the project was
successfully completed. All data presented heke were obtained from North Star Steel - lowa’s 80 ton
Whiting furnace. The furnace is 16.6 feet in diamyeter, and-tifiliZes a 30 MVA transformer.

NOTE: It is important to realize that before the IAF™, North Star Steel - lowa was equipped with a
state-of-the-art closed-loop control computer, a modern electrode regulator, and had efficiency
numbers among the best in the industry. The savings realized at North Star were not due to
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improving an inefficient operation. All savings data occurred while the IAF™ system was receiving
its setpoints from the existing computer control system.

i FURNACE PHENOMENA SUITABLE FOR NEURAL NETWORKS

Although a quantative analysis is impractical here, it is important to gain a qualitative
understanding of how Neural Networks are ideal for furnace electrode regulation.

A.

FURNACES ARE COMPLEX SYSTEMS

The optimal control signal when the furnace is running at 30,000 amps is quite
different from when it is at 50,000 amps. A Neura! Network can learn these
relationships easily, while designing a process model for an Electric Arc Furnace is
extremely difficult.

FURNACES ARE DYNAMIC SYSTEMS

The Electric Arc Furnace is difficult to accurately model because its electrical
characteristics are constantly changing. At the beginning of a "heat" of steel, cold
scrap metal is placed in the furnace—a large bucket. The scrap may have many small
windings and therefore has a large amount of reactance. As the scrap melts, the load
becomes almost completely resistive. Furthermore, no two buckets of scrap are the
same, so there is no good way to enter sufficient data for a rule-based system to
calculate what optimal control should be for a given heat of steel.

A Neural Network can not only learn the general change in furnace response as the
steel melts, but aiso it can quickly recognize and adapt to unusual scrap makeup.

NEED TO BE THREE-PHASE AWARE

Examine the Arc Furnace Schematic in Figure 1. To operate, current must flow from
one electrode, arc into the scrap, and then flow out one or both of the other
electrodes. All previous electrode regulation schemes were based on the assumption
that the Electric Arc Furnace can he modeled as three separate single-phase systems.
Let's explore this assumption.

Suppose a setpoint of 30,000 amps was desired and the furnace was in the following
condition:

PHASE A AMPS - PHASE B AMPS PHASE C AMPS
30,000 30,000 45,000

If the single-phase approximation was perfect, Phase C would be corrected to 30,000
amps but because current flows out one electrode (phase), and returns through the
other phases, lowering Phase C current will also lower the currents through Phases
A and B. So with a single phase control system, this might happen:

PHASE A AMPS PHASE B AMPS * PHASE C AMPS

25,000 25,000 30,000

A Neural Network, however, learns to ask for increased current on phases A and B
while correcting the error on phase C, thus attaining approximately 30,000 amps on
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each phase. This property of recognizing three phase relationships we call being
Three-Phase Aware. Because of the mathmatical complexity of the relationships that
a control change on one phase has on another, people have not been able to solve
this Three-Phase Aware problem. A Neural Network can determine these relationships
after only 10 to 20 minutes of on-line learning.

HIGH VOLTAGE LINE
ZA

PRIMARY
BA AMPS

PRIMARY
pC AMPS

PRIMARY
28 AMPS

aC B
HIGH YOLTAGE LINE HIGH VOLTAGE LINE

Figure 1: Arc Furnace Schematic

FLICKER REMOVER

The electric arc used to make steel is like the arc of a spark plug in that if the contacts
of a spark piug are too far apart, the spark plug won't arc. Similarly, if the distance
between the end of the electrode and the scrap metal is too great, no current will flow.
Flicker happens when the furnace is at the border of instability. As in Figure 2, current
does not flow for part of the cycle; then a rapid change occurs as current suddenly
flows again. This distortion of the sinewave causes less power transfer into the metal,
more electrode wear, and disturbances on the power grid—flicker.

The Neural Network can utilize high speed readings from the Data Acquisition System
to predict and correct flicker problems.
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Figure 2: Phase Amps Versus Time
Because the Neura! Network can learn to predict furnace response, unwanted trends
can be identified and solved—even before they happen. The Neural Network learns the
mechanical time constant of the electrode drive system and, through predictive
control, can dramatically reduce this delay. (We note however, that sometimes
incorrect predictions actually increase response time. No system can be perfect.)

Distorted Yave with Flichker

E. PREDICTIVE CONTROL

. ARC FURNACE DATA ACQUISITION SYSTEM

A high-speed data collection computer was designed and buit. This machine contained a 400,000
sample-per-second, 12-bit-accuracy, 16-channel analog input subsystem, an Intel 80486 1/0 processor,
an Intel i860 80 million floating-point operation-per-second processor for numerical processing, and
12 megabytes of RAM memory. On-line storage was to 1.0 gigabyte hard disks and off-line storage
was 10 a multi-gigabyte tape backup system. An interface subsystem was developed to connect the
above hardware to an electric arc furnace in order to collect the following data items:

Primary Phase to Phase Volts

Primary Phase Amps

Secondary Phase to Phase Volts
Secondary Phase to Hearth (Ground) Volts
Secondary Phase Amps

Existing Regulator Outputs (UP/DOWN)
Microphone (operating sounds)

Regulator automatic / manual signals

TOMMOO®»

Note: For all voltage, current, and regulator output signals, all three phases were sampled.
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Figure 3 shows a block diagram of the data collection system and how it was connected to the arc
furnace and its regulator.

This metering system enabled the researchers to store high-speed tgadings from entire heats of steel
(approximately two hours in length) to disk for off-line analysis and training.

NOTE: The metering system in this project is more than 1000 times faster and much more accurate
than the transducers used in other electrode positioning systems. Because improved metering
techniques resuited in significant savings, we have shown savings calculations from a rule-based
system using the new metering in addition to data from the Neural Network regulator.

PRIMARY PRIMARY SECONDARY SECONDARY
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Figure 3: Arc Furnace Data Acquisition System

iv. OVERVIEW OF NEURAL NETWORK ARCHITECTURE

Three configurations of an Emulator and a Controiler network were used. All utilized the
Extended Deita-Bar-Deita adaption algorithm. Altogether, the models consisted of over 200 fully
connected neurons. Block diagrams are shown in Figure 4.



REGULATOR EMULATOR NETWORK (CONTROLLER}

First, a regulator-emulating network was designed and trained to match the responses
of North Star’s existing electrode regulator. This was done as a safety measure to
ensure that the Neural Network would initially output reasonable control signals.

FURNACE EMULATOR NETWORK

Next, a furnace-emulating network was trained. The network was given a time history
of regulator outputs and furnace state conditions plus the regulator outputs for

timeslice N+ 1. Using these as inputs, the network was trained to predict the furnace
state values for timeslice N + 1.

COMBINED REGULATOR/FURNACE NETWORK

Finally, the furnace and regulator emulation networks were combined. The resulting
compound network was able to learn how to regulate the electrodes to achieve a set

of furnace control setpoints. The network achieves arc current and power factor
setpoints while minimizing flicker.

Weights for both the regulator and furnace networks are updated every 15 seconds,
or 150 data presentations. This technique permits furnace prediction to continually
improve, and allows adaption to changes in operating conditions. Thus, automatic
compensations can be made for changes in scrap charge makeup, line voltage,
electrode length, and system impedance. This automatic tuning is significant because
good data (especially on charge makeup and electrode iength) is seldom available.

Because North Star’s furnace is equipped with a rule-based control computer that
establishes optimum setpoints during a heat, no effort was made to have the Neural
Network duplicate these functions. Making such duplications possible would require
computational hardware which would not be feasible in a commercial product.

EXPERT SYSTEM SAFEGUARDS

Because of the enormous amount of power used by an Electric Arc Furnace, it would
not be safe to trust that the Neural Network system will always produce a "reasonable”
output. Therefore, the Inteliigent Arc Furnace™ Controller was designed with an
expert system which monitors furnace conditions and only allows Neural Network
control during "normal" operation. When the furnace is not normal--such as when
scrap has caved-in, creating a short circuit by touching an electrode--a rule-based
regulator is invoked. The Neural Network system has proven surprisingly robust and
stable. Control is only rarely switched to rule-based mode--and the system has never
created any safety problems.
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SAVINGS DATA

All of the following are actual improvements at North Star Steel, Wilton, lowa. However, the
ar amoums are calculated assuming the following hypothetical firm: production is 300,000 tons
vear; profit per ton is $50; cost of electrodes is $1 per pound; and electrical energy is billed at a

- ot $.03/kilowattshour. These figures are very conservative. This hypothetical plant would achieve

'ngs considerably less than those realized at North Star.

st we present the savings of a rule-based controller which shows the improvement due to better

-trering and rule-based control techniques: (See Note Section i)

mber of rule-based heats (RULE) : 123

«imber of control heats (OLD) : 823
‘ne two months before the rule-based tests)

eM PERCENT iMPROVEMENT SAVINGS
»wer Usage 1.30% $38,700

iectrode Usage 2.94% $48,000
aductivity 2.20% $330,000

2ULE" NET SAVINGS PER FURNACE PER YEAR -—---eeemeem- > $416,700

.ext, we present the savings of the IAF™:

swumber of rule-based heats (IAF) : 250

v. mber of control heats (OLD) : 823

"EM PERCENT IMPROVEMENT SAVINGS
swer Usage 3.3% $118,800
iectrode Usage 30.89% $384,000
'roductivity 4.8% $720,000
AF" NET SAVINGS PER FURNACE PER YEAR ——--commrmeemes > $1,222,800

‘£ RCENT OF SAVINGS ATTRIBUTABLE TO NEURAL NETWORK ONLY = 65.9 %
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CONCLUSIONS

The application of Neural Networks to the controi of an Electric Arc Furnace has been a great
success. Not only has the Intelligent Arc Furnace™ Controlier been abie to create substantis
savings, but also it has proven to be remarkably stable during five months of full-time
operation. It should be noted that the system has successfully been instalied on other
furnaces.

We hope this work will give credibility to Neural Networks’ abilities to perform critical tasks.
We are presently working to develop similar systems for several other industrial applications.
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FAST NEURAL SOLUTION OF A
NONLINEAR WAVE EQUATION

Nikzad Toomarian and Jacob Barhen

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109

A neural algorithm for rapidely simulating a certain class of nonlinear wave phe-
nomena using analog VLSI neural hardware is developed, presented, and applied to the
Korteweg-de Vries partial differential equation. The corresponding neural architecture
is obtained from a pseudospectral representation of the spatial dependence, along with

a leap-frog scheme for the temporal evolution. Numerical simulations demonstrate the
robustness of the proposed approach.

1. Introduction

A large variety of physical phenomena can be described be means of partial differential equations{11].
In practical applications involving the numerical solutions of such equations, one is not only interested in
computational speed, but also in the accuracy of the results, as well as the stability of the numerical scheme
employed. Recent advances in neural analog VLSI hardware architectures provide a strong incentive to
develop massively parallel neural algorithms, which can fully realize the capabilities of such hardware.

In order to provide a concrete framework for the proposed formalism, we focus our attention on the
Korteweg-de Vries (KdV) equation [5]. This nonlinear partial differential equation has the advantage of
exhibiting both sufficient computational complexity, and possessing analytical solutions. This enables a rig-
orous benchmark of the proposed neural algorithm. The KdV (or soliton) equation was originally introduced
to describe the behavior of one-dimensional shallow water waves with small but finite amplitudes. Since its
discovery, solitons have enabled many advances in areas such as plasma physics and fluid dynamicsfe.g.,
9,10,12]. In this paper, we limit ourselves to the solution of the one-dimensional, 1-soliton problem.

To fix the ideas, consider the following expression of the KdV equation:
Uy +aU U+ b U =0 1)

where u; and u, denote partial derivatives of u with respect to time and space, respectively. If one selects
the values of the constant @ and b as 6 and 1 respectively, an analytical solution of Eq. (1) over an infinite
interval can be obtained [2]:

u(z,t) = 2k?sech?(kz — 4k>t + 7o) (2)

where k and 7o are constants, with k£ > 0. The above expression represents a solitary wave of amplitude
2k? initially located at £ = —no/k, moving with the velocity 4k2. In order to numericlly integrate Eq. (1),
we require the solution to satisfy periodic boundary conditions, i.e., u(z + 2L,t) = u(z,t) for z € R and
t € [0,T). Specifically, we will consider numerical solutions in the region —L < z < L, with the positive
constant L chosen to be sufficiently large for periodic conditions to be valid.

0-7803-0559-0/92 $3.00 © 1992 IEEE IIi-10



2. The Pseudospectral Scheme

In this section, the pseudospectral representation described, will be as it applies to the KdV equation
(1). However, the method is general and can be implemented for a broad class of periodic initial value PDEs
(3]. In the pseudospectral computational scheme u(z,t) is transformed into Fourier space with respect to
the spatial variable, z. The main advantage of this operation is that the derivatives with respect to z are
algebraic in the transformed variable. Furthermore, we normalize the spatial period to the interval [0, 27},
using the transormation ¥(z + L) — z. The scaled KdV equation can then be expressed in terms of the new
state variable v(z,t) as
v +6svv 485 veze =0 (z,8) €Rx[0,T], (3)

where s denotes 7 /L.

In order to numerically solve Eq. (3), the interval [0,2n] is discretized by 2N equidistant points, with
spacing A; = n/N. The function v(z,t), which is defined only at these points, is approximated by V(za,1),

where z, = nA,, and n = 0,1,--- 2N — 1. The function V(z,,1) is now transformed to discrete Fourier
space by
) 1 2N -1 .
Vip,t) = F[V] = —— V(zn,t) e7?Hon (4)
Tom X
where p takes the values p = 0,%1, ..., N. The inversion formula is
. 1 ) :
V(zp,t) = FTH{V} = ——= ) V() ¥ (5)
) Tam &
This enables an efficient calculation of the derivatives of v with respect to
v, & V. = F~Y{iuF[V]} (6)
Vezz X Vege = F =iy F[V]} (7

Fornberg has shown [12] how such a representation of derivatives of periodic functions can be related to
central difference approximations of infinite order. Combining Eqs. (6-7) with a leap- frog approximation to
the temporal derivative, results in the pseudospectral scheme for solving the KdV equation:

V(za,t+ A0 = V(zn,t = &) = 1258V (2, )[F 7} (inV (1,1))) 8)
+ 28 A i1V (1,1))

where A, denotes the time step size. Fornberg and Whitman [3] modified the final term in Eq. (8) to produce
the scheme

Vizga,t + Ay) = V(za,t — Ay) — IQSA‘V(I""’t)[F_l(i'uV(ll’t))] (9)
+ 24[F*(sin(s*pPA)V (u,1))]

which 1s more accurate, specially when dispersion effects dominate the nonlinearity. Moreover, the linearized
stability condition for Eq. (9) is

2L
A < (7\,—)3 0.1520 (10)
Note that a similar condition for Eq. (8) would be more restrictive. A detailed review of numerical schemes

for the KdV equation can be found in [8]. Our emphasis here is only on approaches readily amenable to
neural hardware implenetaiton.
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3. Neural Network Architecture

In order to map the numerical solution scheme of the KdV equation into a neural network architecture,

we return to the evaluation of the spatial derivatives. Let us expand Eq. (6) by substituting the appropriate
terms from Egs. (4) and (5). One obtains

.

2N-1

1 1 . A
V,,- , = 2 s ~ijZm IHTa
(zn,1) 7eM) X“:zp\/(zN) ; V(zm,t) e e (11a)
By rearranging the terms, we get
Valzn,t) = 3 ViEm O)(55) 2 p €457 (1)
m p

Now, we can represent the last term in Eq. (11b) by a constant matrix which depends solely on the distance
between two spatial grid points, i.e.,

i .
i) = (W)E” etHlEn=Em) (12)
N

Since the function V(z,,t) is real, its derivatives should be real as well. Thus, only the real part of the
matrix in Eq. (12) is needed for the computation of Vz(zn,t). Hence,

TR = Rel(gg) 2on )] (130)
»
resulting in
T = ~(§ﬁ>;usinwn—zmn (136)

Following the same procedure, one can evaluate the third order derivative with respect to z and find the
grid interconnectivity matrix which relates to Eq. (7) ie.,

T = (5) Yo b sinlp(zn = 2m)] (14

We can now proceed with the specification of the neural architecture. Let each grid point represent a neuron

with activation function v, (t) equal to V(za,:). Combining Eqgs. (13b) (14), and (3), the network dynamics
is readily obtained:

9n(t) + 65un(t) D Tirvm(t) + 23 TRvm(t) = 0 (15)

The initial values for Eq. (15) are similar to those of Eq. (3). Thus, our architecture consist of 2N neurons,
the dynamics of which is governed by a system of coupled nonlinear differential equations, i.e.,Eq. (15). Two
overlapping synaptic arrays, T() and T fully interconnect all neurons. The elements of these synaptic
arrays are calculated from Egs. (13b) and (14), respectively.
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The main purpose of the above discussion was to cast a nonlinear partial differential equation (i.e., the
KdV equation) into a form amenable to implementation on novel charge domain VLSI circuits, currently
being developed at Caltech, capable of performing high speed vector-matrix multiplications{1,6-7]. The
vector-matrix multiplier consists of a matrix of CCD cells having an architecture inspired by charge injection
device (CID) imager pixels, in that one of the cell’s gates is connected vertically from cell to cell forming a
column electrode, while another gate is connected horizontally forming a row electrode. The charge stored
beneath the row and column gates encodes the matrix, with the column and row electrodes representing the
input vector and the output vector, respectively. In its most basic configuration, shown in Fig. 1, such a
circuit computes the product of a binary input vector and an analog matrix of charge. The computation done
by each CCD cell in the matrix is a multiply-accumulate in which the charge, Qi;, is multiplied by a binary
input vector element, U;, encoded on the column line and this product is summed with other products in
the same row to form J;. Multiplication by a binary number is equivalent to adding or not adding the charge
at a particular matrix element to its associated row line. Since all column electrodes are pulsed at the same
time, and the associated voltage changes are then capacitively summed on the row lines in parallel, the entire
vector-matrix multiplication is accomplished in one clock cycle. Many improvements have been incorporated
into this basic structure, the most important being the ability to handle digital (instead of binary) input
with 2" levels, and digital output using novel, compact A/D designs. A 256x256 element circuit is currently
being fabricated, which is expected to exceed 10'2 operations/second/bit of precision.

Matrix Charge Row Gaic

I
I
2
i
§
>
=t
g
I
Ul Uz U J Column Gate

Input Vector

Figure 1. The CID architecture consists of an array of CCD elements that are connected to-
gether by row and column electrodes. The matrix values are encoded as charge packets
that sit underneath these gates in the silicon substrate. The computation occurs when
the charges are transferred from the column gates to the row gates which perform a
capacitive sum operation. (Courtesy, C. Neugebauer, Caltech).
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In terms of these CCD/CID circuits, the neural network dynamics described by Eq. (15) can be recast
as follows, using the leap-frog scheme for temporal dependence

Val(t + Ar) = vn(t = Ay) = 124,504(2) Y TEDvm(t) = 245% ) T vm(2) (16)

If we include the approximation which resulted in Eq. (9), we obtain
R o

vt + Be) = va(t = Ae) = va(t) D Wium(t) = D WiDlvm(?) (17)
where 1258 ‘
Wi = ~(S) 2 sinlu(en = zm)] (18)
»
W,(‘?,Z = (;F) ; sin(s2p3A,) sin[u(zn — zm)) (19)

where W(1) and W) are the synaptic matrices corresponding to the first and third spatial derivatives in
the KdV equation, and include the scaling factor as well as the time step.

4. Simulations

In order to evaluate the capability of the pseudospectral neural architecture in a CCD/CID neural circuit
framework, a computer code was written to simulate Eq. (17) as an approximation of the KdV equation,
Eq. (3). In these simulations, the spatial region [-20, 420} was divided into 64 equidistant points, i.e.,
A, = 40/64. The initial conditions were chosen to be

u(za,0) = sechz(\/-iz,,) (20)

1.100

0.900 +

0.700 +

0.500 -

0.300 1

L

0.100 -

-0.100 } { } 4 } } }

Figure 2. Superposition of Neural Simulation and analytical solution of the KdV equation.
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which coresponds to a solitary wave initially located at z = 0 and moving with speed 2 [ie., 3.2 A, per
unit time]. The integration time step was selected to be A, = 0.005, which satisfies the linearized stability
criterion, Eq. (10). The numerical results obtained at different times, (i.e., t = 0.,2.,4.,6.,8. ) are depicted
in Figure 2, and compared with the analytical solution given by Eq. (2). As is obvious from Figure 2,
the simulated neural solutions very closely overlap the analytical ones. It is impossible to distinguish the
two curves on the plot. This indicates that Eq. (17), and the corresponding neural architecture provide an
excellent computational framework for solving certain classes of PDEs, such as the KdV equation.

5. Conclusions

A neural algorithm for rapidely simulating a certain class of nonlinear wave phenomena using analog
VLSI neural hardware was developed and presented. A neural architecture for solving partial differential
equations of the Korteweg-de Vries type was obtained from 2 pseudospectral representation of the spatial
dependence, along with a leap-frog scheme for the temporal evolution. The formalism was developed for full
compatibility with CCD/CID analog VLSI neural circuits, enabling fast (potentially 10!? ops/sec/bit preci-
sion), massively parallel computation. Numerical simulations demonstrated the robustness of the proposed
approach.
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ABSTRACT

In this work, a modular approach to the design of Neural Networks for fault diagnosis in electrical
networks of real size is described. Modularization is strictly based on functional criteria, rather than
topological criteria as it is usually found in literature.

This approach allows to obviale the problems inherent to this kind of applications (big amounts of
information to be processed, high degree of uncertainty in data, changes in the topological features,
sources of uncertainty). The most important characteristics of our model are: simplicity of the
modules, replicability of the training results, easy adaptation to topological changes, and high
scalability. Furthermore, it allows for parallel implementations. A portion of a real transportation
electrical network has been simulated.

1 Introduction

Onc of the problems that come up when monitoring large power systems is the high number of alarms that can
be generated during a disturbance. A certain skill is required from the operator to recognize events and the status
of the components of a power system from the scquence of alarms reaching the dispatching centre. In this paper
we will concentrate on the application of ncural networks 10 the detection of faulty clements in a power system
(rom information containcd in alarm messages. This type of fault diagnosis can be reformulated as a pattern
classification problem in which input data pattcrns (alarms) rcpresenting the behaviour of a physical system
(clectrical transportation nctworks) must be mapped to possiblc fault conditions.

The scquence of alarms generated in a disturbance is not a simplc onc. The operator can miss important
information, as the one availablc from the alarm messages is noisy and uncertain. The following are the main
sources of complexity in the application we will dcal with in this paper:

(3 Big amounts of information: in a real world size electrical network, there are thousands of possible
sources of alarms and hundreds of possible locations of a fault. Thc number of possible patterns is
certainly unmanagcablc.

(b) Simultancous disturbanccs: it may happen that the alarms rcaching the system are duc to unrelated and
almost simultancous disturbances (more than one cause for the observed effects). Sometimes it is not
clear whether we arc facing more than onc disturbance or more than one effect of the same disturbance.

(c) Urgency of the situation: Answcrs must be provided fast enough. The reaction time is very important
for serious disturbances, although usually there is not a fixed time constraint.

* This work has becn partially supported by the CEC, ESPRIT projcct no. 5433, NEUFODIL.
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