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PREFACE TO FIRST EDITION

This book is a successor to my Cambridge Tract The Zeta-Function of
Riemann, 1930, which is now out of print and out of date. It seems no
longer practicable to give an account of the subject in such a small space
as a Cambridge Tract, so that the present work, though on exactly the
same lines as the previous one, is on a much larger scale. As before, I do
not discuss general prime-nuniber theory, though it has been convenient
to include some theorems on primes.

Most of this book was compiled in the 1930’s, when 1 was still
researching on the subject. It has been brought partly up to date by
including some of the work of A. Selberg and of Vinogradov, though a
great deal of recent work is scantily represented.

The manuscript has been read by Dr. S. H. Min and by Prof. D. B.
Sears, and my best thanks are due to them for correcting a large number
of mistakes. I must also thank Prof. F. V. Atkinson and Dr. T. M. Fleet
for their kind assistance in reading the proof-sheets.

OXFORD E.C.T.
1951 .



PREFACE TO THE SECOND EDITION

SIncE the first edition was written, a vast amount of further work has
been done. This has been covered by the end-of-chapter notes. In most
instances, restrictions on space have prohibited the inclusion of full
proofs, but I have tried to give an indication of the methods used
wherever possible. (Proofs of quite a few of the recent results described
in the end of chapter notes may be found in the book by Ivic [3]) I have
also corrected a number of minor errors, and made a few other small
improvements. to the text. A considerable number of recent references
have been added.

In preparing this work I have had help from Professors J. B. Conrey,
P.D.T. A. Elliott, A.Ghosh, S.M. Gonek, H.L. Montgomery, and
S. J. Patterson. It is a pleasure to record my thanks to them.

OXFORD _ D.R. H.-B.
1986 '
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1

THE FUNCTION ¢(s) AND THE DIRICHLET
SERIES RELATED TO IT

1.1. Definition of {(s). The Riemann zeta-function {(s) has its origin in
the identity expressed by the two formulae

@

Us) = % (L.1.1)

n=1

where n runs through all integers, and

[(s) = 1_.[(1_%8)_1’ (1.1.2)

»
where p runs through all primes. Either of these may be taken as the
definition of {(s); s is a complex variable, s = o-f. The Dirichlet series
(1.1.1) is convergent for o > 1, and uniformly convergent in any finite
region in which ¢ > 148, 8 > 0. It therefore defines an analytic func-
tion {(s), regular for ¢ > 1.

" The infinite product is also absolutely convergent for o > 1; for so is

1 1

this being merely a selection of terms from the series > n~?. If we
expand the factor involving p in powers of p—¢, we obtain

1 1
1+=—+—+ )
| [T+

On multiplying formally, we obtain the series (1.1.1), since each
integer 7 can be expressed as a product of prime-powers p™ in just one
way. The identity of (1.1.1) and (1.1.2) is thus an analytic equivalent
of the theorem that the expression of an integer in prime factors is
unique. ‘

A rigorous proof is easily constructed by taking first a finite number
of factors. Since we can multiply a finite number of absolutely con-
vergent series, we have

[+

p<P

L
7

where 7y, 1,..., are those integers none of whose prime factors exceed P.

1 1 1
+;)'i§+) = 1+;i+ 7‘Lg+---,
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S
defined by (1.1.1),

11
— ) . ) A
o) p<,,( p") { !g(s nong
L ——
TP T (P2y

This tends to 0 as P -» o0, if 0 > 1; and (1.1.2) follows.

This fundamental identity is due to Euler, and (1.1.2) is known as
Euler’s product. But Euler considered it for particular values of s only,
and it was Riemann who first considered {(s) as an analytic function
of a complex variable.

Since a convergent infinite product of non-zero factors is not zero,
we deduce that {(s) has no zeros for ¢ > 1. This may be proved
directly as follows. We have for ¢ > 1

(-3~

where m,, m,,..., are the integers all of whose prime factors exceed P.
Hence

1 1 1 1
(=g~ 50| > 1~ Gt g > ©
if P is large enough. Hence [{(s)] > O.

The importance of {(s) in the theory of prime numbers lies in the
faet that it combines two expressions, one of which contains the primes
explicitly, while the other does not. The theory of primes is largely
concerned with the function m(xz), the number »f primes not exceeding x.
We can transform (1.1.2) into a relation between {(s) and =(x); for if
o>1,

log {(s) == ."‘ z log(l———) = — z {m(n) .——n(n—l }log(l-—)

n==2 ‘
- Sl -t
— wn)ﬂf+1 i dx:—_s'fx(;’ff)l)dx. L (113)

The rearrangement of the series is ]ustlﬁed since 1r('n) n and

Iog(l—n—’) = O(n"’)

nece all integers up to P are of this form, it follows that, if {(s) 18 . -
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. 1 1
Again O n(l_z.;;),

»
and oun carrying out the multiplication we obtain

2"@ (0 >1) (1.1.4)

n=1

where (1) = 1, p(n) = (—1)* if n is the product of k different primes,
and p(n) = 0 if » contains any factor to a power higher than the ﬁrst
The process is easily justified as in the case of {(s).

The function p(n) is known as the Mobius furrction. It has the

property zﬂ(d) =1 (q"‘l_—]): 0 (g > 1), © (1.1.5)
dig

where d | ¢ means that d is a divisor of g. This follows from the identity

1:2 1#(n) anz

m=1 ne= gq=1 dlg

It also gives the ‘Mobius inversion formula’

g9(g) = 2 f(d), (1.1.6)
dlg

fQ=> #({%)9(01), (1.1.7)
dig

connecting two functions f(n), g(n) defined for integral n. If f is given
and g defined by (1.1.6), the right-hand side of (1.1.7) is

dzw: #(%) ﬂzdf(r)-

The coefficient of f(q) is u(1) = 1. If r < g, then d = kr, where k|g/r.
Hence the coefficient of f(r) is

2 ) = 2=

kig/r

by (1.1.5). This proves (1.1.7). Conversely, ifg is given, and f is defined
by (1.1.7), then the right-hand side of (1.1.6) is

.,Z.q % u(“—f)gm,

and this is g(g), by a similar argument. The formula may also be
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derived formally from the obviously equivalent relations

_ N9 1 <gln)
3) . F()'—‘c(s) 1”/”

n=1

where. - F(s) = if:?,
n=1

Again, on taking logarithms and differentiating (1.1.2), we obtain, for

R

_.—zlogpz

m=1

_ ZM”) (1.1.8)

)
n@
n=2

where A(n) = logp if n is p or a power of p, and otherwise A(n) =
On integrating we obtain B _
log {(s) = 21% @>1), - . 1LY
n=2
where A,(n) = A(n)/logn, and the value of log {(s) is that which tends
to 0 as o - o0, for any fixed ¢.

1.2. Various Dirichlet series connected with {(s). In the first

place , .
{s) = zd(n) @, (12.1)
. n=1 :
where d(n) denotes the number of divisors of n (including 1 and n itself). !
For
1 -
po=3LSL->L 3
p.*l v*l py=n
and the number of terms in the last sum is d(n). And generally
S @ (’n) o
ks) = " (e>1), (1.2.2)

where k = 2, 3, 4,..., and d,(n) denotes the number of ways of expressing
n as a product of k factors, expressions with the same factors in a
different order being counted as different. For

@

v;-—l =1

and the last sum is d,(n).

go
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Since we have also
1\-2
{2(8) = (1 ————) ( ) 1.2.3
Ipl » lpl +— + + ( )

on comparing the coefficients in (1.2.1) and (1.2.3) we verify the
elementary formula

din) == (m,+ 1}.. (m,+1) (1.2.4)
for the number of divisors of

‘ n = pppgs..p (1.2.5)
Similarly from (1.2.2)

(k+m,—1)! (k+m,—1)!
( 1 r ¢
dyln) = T =T (1) (1.2.6)
We next note the expansions
f((:é) (e > 1), (1.2.7)
where u(n) is the coefficient in (1.1.4);
22(s) . Sa Qv(n) )
ko ,Zl_'—‘s_ (¢ > 1), (1.2.8)
" where v(n) is the number of different prime factors of »;
Bs) < dm?) -
1o = 'Zl_ns (0> 1), gl.z.l)
z.:4<s S @y 5
and - 15 Z (o > 1). (1.2.10)

To prove {1.2.7), we have
C(s 1—p® !
s~ L1T=p= ™ I;I 1+173 ’

and this differs from: the formula for 1{{(s) only in the fact that the
signs are all positive. The result is therefore clear. To prove (1.2.8), we

have &) _ypy i—p™ _pylie”
&2s) 11(—p~p L 1l-p~

= 1;[ (14-2p—*+2p~2+..),
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and the result follows. To prove (1.2.9),
{3(8) _p—n 1+p—n
{(29) H (I—p~)? I—I (I—p~p
= I;I {(1+p‘3)(1+2p-’+3p‘2‘+---)}
=TI {(14-8p=t+4 ...+ (2m+ Dp-mf ..,

" and the result follows, since, if # is (1.2.5),

d(n?) = (2my+1)...(2m +1).

Similarly
0e) _ 1T l-p™ _ 14p~*
{2~ LLa=p—p o (=P~

= TpI (14 p~){1+3p=+ ..+ 4(n+1)m+2)p~m+..}

=TT {1-+4p~* -+t (et 1)2p-mst..},

and (1.2.10) follows.
Other formulae are

4(2s) _ o Am)
7;‘('3)‘:27»7 (@>1), o (r211)

where A(n) = (—1)" if » has r‘prime factors, a factor of &egree k being
counted k times;

n=1

(e=1) _ S ém)
{(s) n’

where ¢(n) is the number of numbers less than » and prime to n; and

o> 2), (1.2.12)

n=1

1“ ~ ts— a(n) ‘

T {1 ,; 2 e>2), (1.2.13)
where a(n) is the greatest odd divisor of n. Of these, (1.2.11) follows
at once from

S8 TT(1=75) - T e - [T -

Also

T - T3 050-)
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; TR 7
and (1.2.12) follows, since, if n = p{"...p7",
1 1
¢x) = n(l———)...(l._ __)_
in¢ 2! ?,
Finally
] —91-8 1_21_3
e = T i
_ 1 1 1
= {2 1—31 15"
NI

and (1.2.13) follows.
Many of these formulae are, of course, simply particular cases of the

general formula
< fn) S, f(p*)
= EAL LAY T
,Zl"” U{+p‘+p”+}

- where f(n) is a multiplicative function, i.e. is such that, if n = pPpit...,

then | ) = S P3)-...

Again, let f.(n) denote the number of representations of n as a product
of k factors, each greater than unity when n > 1, the order of the factors
being essential. Then clearly

n)

O
Z'fk
n=2 n’

Let f(n) be the number of representations of » as a product of factors
greater than unity, representations with factors in a different order
being considered as distinct; and let f(1) = 1. Then

fim) = 3 filn)

= {{(s)—1}} (o >1). (1.2.14)

Hence

S S gy

. 1
T 2-Y(s)’

It is easily seen that {(s) = 2 for s = «, where « is a real number greater
than 1; and |{(s)| < 2 for o > «a, so that (1.2.15) holds for o > a.

(1.2.15)
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1.3. Sums involving o, (n). Let o,(n) denote the sum of the ath
powers of the divisors of n. Then

l,w=n
ie. {(8){s—a) = i a‘;i?) (¢ > 1, o >R(a)+1). (1.3.1)
n=1

Since the left-hand side is, if @ # 0,

[T (gt (1 5w

P
_ 14+p%  1+p24p* ) _ ( 1—p )
=11 =TT
U( et [:[ s p,+
wo have aq(n) - 1—pimde l_p(’m'ﬂ)a, | (1.3.2)

1—p 7 1—p¢

if % is (1.2.5), as is also obvious from elementary considerations.
The formulat

L)L (s—a)l(s—b)l(s—a—b) _ S earlasn)

[2s—a—b) > (1}.3.3)

n=1

is valid for o > max{l,R(a)+1,R(0)+1,R(a+b)+1}. The left-hand
side is equal to

- _.p—zs+u+b
U (I—p)(I—p=+a)(I—p=* )1 —p~+as)’

Putting p-# = z, the partial-fraction formula gives

l_pa+bz2

(1—2)(1—p2)(1—p2)(1—p**2)
1 g1 »° per )
—(—p)(1— "){1- T l-p% P”z+1 —p*tz

= (—1_:},'5)1( i —-p—r) z (1 —pim+a_ pm +Db.t gym+2Na +b))zm

= m’zo(l—p(mﬂ)a)(l -p("‘+1)°)zm

+ Ramanujan (2), B, M. Wilson (1).
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Hence

{(s)l(s—a)l(s—b){(s—a—b) kel __p(m+l)a 1;p(m+1)b 1
C(Qs——a—b) - n 2 1—-—])‘1 ""P ])ms

and the result follows from (1.3.2). If @ = b = 0, (1.3.3) reduces to
(1.2.10).

Similar formulae involving ¢{?(n), the sum of the ath powers of those
divisors of » which are gth powers of integers, have been given by
Crum (1).

1.4. It is also easily seen that, if f(») is multiplicative, and
S f)
o
n=1

is a product of zeta-functions such as occurs in the above formulae, and
k is a given positive integer, then

zfim)

can also be summed. An example will illustrate this point. The function
o,(n) is ‘multiplicative’, i.e. if m is prime to n

og(mn) = oa(m)a (n).

Hence aa(n
n=1 m=0
and, if k£ = 1] 2%
i I—[ z (pl+m
p m=0
Hence
< oa(kn) _ < Ta(pH™) oa(p'")}
z = L) a)I_[{Z= o /Z S
n=1 plk *m=0 m
Now ifa £ 0,
) 0,a(pum) sl l_p(l+m+l)a 1_pa—s__p(l+1)a-+p(t+1)a-g
,,Zo ™ _,,Zo(l—p“)p“ — (Q=p)(1—p=)(Q—p**)’
Hence
(kn) 1—pr-s— pl+ha pi+Da-s
= {(s)¢(s—a) - . (1.4.0)
Makinga 0, > X — g TT er1—tp, (1.1.2)
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1.5. Ramanujan’s sums.t Let
. 2nhm
c.(n) = e—2nh1ﬂ,‘k — 5.
x(n) = Zh = z cos ==, (1.5.1)

)
where b runs through all positive integers less than and prime to k.
Many formulae involving these sums were proved by Ramanujan.

We shall first prove that

k
= — 2
ci(n) E ,u(d) d. (1.5.2)
. dlk.din
k=1
The sum ne(n) = 3 e-2nmmilk

is equal to k if k|n and 0 otherwise. Denoting by (r, d) the highest
common factor of r and d, so that (r, d) = 1 means that 7 is prime to d,

Te =3 3 ewmid=qn).
(rd)=1r<d

"Hence by the inversion formula of Mé6bius (1.1.7)

cp(n) = Zﬂ(g)ﬂa(")’
ak

and (1.5.2) follows. In particular

ci(1) = plk). (1.5.3)
The result can also be written : '
an) = 3 p
dr=k.din
Hence c"}f:') = p() di-s.
‘ dr=k,dln

Summing with respect to k, we remove the restriction on r, which now
assumes all positive integral values. Hence}

_ (jl) —_ ﬁ(ljdl—s . QI—s(n) 1.5.4
& ks - z 78 - C(s) 3 ( .0, )
the series being absolutely convergenb for ¢ > 1 since |ck(7z)] < 0y(n),

by (1.5.2).
We have also

H

a-503 ) ;
Z () z(nd' = 5(“‘)2 ()d"s (1.5.5)

t+ Ramanujan (3), Hardy (5).
+ Two more proofs are given by Hardy, Ramanujan, 137-41.
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We can also sum series of the formt
@
cx(n)f(n)
n
n=1
where f(n) is a multiplicative function. For example,

a0 5 o
n 1k,5in

n=1
_ &\ <= d(md)
=2 (5) (m3)"
Slk m=1
= I¥s) 2 31—3,‘(2) [—[ (+1—Ip-*)
. djk paty
if =[] . If k = [] p” the sum is
k
e TL o 1=2= S (B a0 IT at 109+
I A s
+ Z (Jc_)l_s{"— A—1)p~HA—QA—-1)p'~%} A+ 1—=2Ap"-*)—
pp'lk Py’ rr{
P"#p,p

= k1 g {(M— 1—2Ap=*)— pll_, {A—(A—l)p“’}}
- qifpo--55)
Hence

S e _ g T (1= Laafi—2)i L)), s

n=1 pik
We can also sum Z CM.
nS
n=1

For example, in the simplest case f(rn) = 1, the series is
> 1 k
— 8}&(‘—) .
nz 2" Sll%qn \8
For given 3, n runs through those multiples of 8/¢ which are integers.

If §/¢ in its lowest terms is 8,/g,, these are the numbers §;, 23,,....
Hence the sum is

2! ( ) i oy = Y0 2> a,;(%‘)ar

Sk = Sk
t Crum (1).




