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Preface

This book presents a course in Linear Programming which will be suitable for a wide
range of undergraduate and postgraduate courses. Stufents of Mathematics, Science
and Engineering, as well as students on Management icourses which contain a solid
component of quantitative methods, will find the text very useful and suited to their
needs. Postgraduate students, particularly those on conversion courses in Operational
Research or Management Science, will also find the material of value.

The mathematical theory is carefully developed, although there are more rigorous
treatments. What the text may lack in rigour is more than compensated for by the main
thrust of this book, which is to show, in a vivid manner, the way in which the theoretical
ideas are transformed into practical computational procedures capable of implemen-
tation on a digital computer. The methods are computer methods and should be treated
as such. It is no accident that the main theoretical developments coincided in time with
the advent of the computer. Without the latter it would not have been possible to exploit
the potential of the theory in the actual solution of real problems.

The text assumes that the reader is familiar with the language BASIC, which is w1dely
used on.most microcomputers. The programs have been written in this language. Of
course many main-frame computers contain packages which will implement the
methods discussed in this book. However, these can be remote and can be treated as a
black box and thus used without full understanding. The interactive nature of most
microcomputers will allow the student to become intimately involved with the programs.
It is not claimed that these are incapable of improvement. Indeed the author would be
delighted to hear from readers who feel that they can produce better programs. It is
through such close involvement that students will gain a real appreciation of the
significance of the theory as well as developing their practical computational and
programming techniques. The programs given are r%bust and practical. They could

easily be translated into other languages such as FORTRAN or Pascal if it is desired to
use them on other computers.

The modelling aspects of Linear Programming ard catered for through the worked
examples within the text, and the exercises to be fount at the end of each chapter. The
reader is strongly advised to test his skills with these problems. Although some of them
are necessarily abbreviated and simplified, they do point to the wide variety of situations
in which Linear Programming can find application.

A few remarks about BASIC and the way in which it is used in this book are
appropriate. The programs have been written in such a way that they should run with
the minimum of fuss on any microcomputer. Thus no attempt has been made to include
colour, sg und or high resolution graphics.

In the” assignment statements LET has been omitted. On some computers it is
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obligatory and so would have to be inserted. The THEN has been included in
IF ... THEN GOTO statements, although on some ‘computers either the THEN or the
GOTO may be omitted. No use has been made of the IF... THEN. .. ELSE or the
REPEAT ... UNTIL... facilities as these are not universally available. It is assumed
that arrays start at a zero suffix. On machines whose arrays start with suffix 1 some
changes would be necessary. One way which should always work is to increase all of ,
the suffices including those in the DIM statements by 1. Thus DIM A(M) becomes DIM
AM + 1); B(K, L) becomes B(K + 1, L + 1). However, in particular cases the reader
might well find more elegant modifications. The numerical answers given are those
obtained on a PET. Some machines which store numbers to a different accuracy will not
precisely reproduce the results given here aithough the differences should only occur in
the least significant digits.

It is a pleasure to thank friends, colleagues and students who have contributed to this
work. The students have been willing guined-pigs for many of the problems. Some of
these have been taken from examination papers set at the University of Bradford. I am
grateful to the university for permission to use these questions, I would particularly
mention Dr R. E. Scraton who, besides improving my Numerical Analysis, has allowed
me to use his formatting procedure in some of the programs. I am indebted to Mr C
Mack for many beneficial and illuminating discussions on the ideas of his method for the
Assignment Problém, and the way to program the method. Last but by no means least I
must thank Mrs Valerie Hunter who transformed my scruffy manuscnpt into a neat and

tidy typescript.

BRrAN BUNDAY
1984
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1
Fundamental Ideas

1.1 Introductlon

Linear programming has proved itself to be an extremely powerful technique in the
solution of certain problems which arise in the field of Operational Research. The word
‘programming’ means planning in this context, and gives a clue as to the type of
_ application. The ideas were first developed during World War II in connection with
finding optimal strategies for conducting the war effort. Since that time they have found
~ wide application in industry, commerce and Government Service, the la i
and national level. The methods are of value in the- ation and solution of many
(though not all), problems concerned with the efficient use of limited resources. '

'Some of the ideas can be illustrated from consideration of the following s1mp||ﬁed
version of a real production scheduling problem.

Example 1

A firm produces self-assembly bookshelf kits in two models, A and B. Production of
the kits is limited by the availability of raw material (high quality board) and machine
processing time. Each unit of A requires 3 m? of board and each unit of B requires 4 m?
of -board. The firm can obtain up to 1700 m? of board each week from its suppliers.
Each unit of A needs 12 minutes of machine time and each unit of B needs 30 minutes
of machine time. Each week a total of 160 machine hours is available. If the profit on
each A unit is $2, and on each B unit is $4, how many units of each model should the
firm plan to produce each week? :

In order to.formulate this problem in mathematical form Jet the weekly productlon of
A be x, units, and of B, x, units. The problem is then to find the best values for x, and
X, A fairly obvious way to interpret best for this problem is so as to maximise proﬁt
each week. The weekly. profit can be expressed as

P=2x, +4x, ‘ (1)

The firm will achieve its objective by maximising the objective function P = 2x, +
4x,.

Classical optimisation says that an-optimum of a function will occur either where the
derivatives are zero or on the boundary of the domain space. To consider the
derivatives only is inadequate.

oP oP
—=2 and —=4
ox, ox,

and it is not possible to make these derivatives zero by choice of x, and x,. Indeed the
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way to increase P is to go on increasing x, and x,. But, and this is the essence of the
problem, x, and x, cannot be increased without limit. Their possible values are
restricted by physical considerations and by the constraints on raw material and
machine time. ’

Because x, and x, represent the number of units of each model produced each week,
it is clear that they cannot be negative:

ie. x,20,x,>0. (1.2)
The constraints on availability of board and machine time can be put in the form:
Board: 3x,+4x,<1700

Machine hours:  {x, + $x, < 160

ie 3x,+4x,<1700
2x, + 5x,< 1600

(1.3)

Thus the. problem is to find values of x, and x, which satisfy the non-negativity
conditions (1.2) and the inequality constraints (1.3) so as to maximise P = 2x, + 4x,.

This is a typical linear programming problem. The objective function which is to be
maximised is a linear function of the variables. The constraints on these variables are
also linear. Indeed for this particular two-dimensional problem they can be represented
graphically by the lines shown in Fig. 1.1. The non-negativity conditions restrict the
variables to the positive quadrant. The constraints are represented by the lines:

3x, +4x,=1700
2x, + 5x,=1600.

The arrow on each constraint in Fig. 1.1 indicates the side of the line on which the
constraint is satisfied. The directions on each arrow can easily be determined by
considering whether the origin (0, 0) satisfies the constraint. The shaded area OABC
which contains all points (x,, x,) satisfying equations (1.2) and (1.3) is called the
feasible region. Points within and on the boundary of this region represent feasible
solutions of the constraints. There are plenty of feasible solutions. The problem is to find
the one (or might there be more than one?) which maximises P.

The (dashed) lines (a) 2x, + 4x, = 0, (b) 2x, + 4x, = 800, are shown in Fig. 1.1.
These lines are parallel and represent two contour lines of the function P with values 0
and 800 respectively. It is clear that the value of P increases as the contour lines move
further away from the origin in the positive quadrant. Indeed the vector with

oP
ox, ' 2
components op i.e. the vector with components (4) points in the direction of

ox,

increasing P and this direction is perpendicular to these parallel lines, away from 0, as
shown.
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X2‘

te) \ Direction of increasing P

X1
2x, +5x, = 1600

3x, +4x,=1700

The contour line with the highest value of P which has at least one point in common
with the feasible region is the line (c), which passes through the vertex B, and on which
P has the value 1400. The point B, x, = 300, x, = 200 corresponds to the optimal
solution for the problem. These values can be obtained as the solution of the equations

3x,+4x,=1700
2x, + 5x,=1600.

Of course the maximum profit is then 2 x 300 + 4 x 200 = 1400. In the optimal
solution both constraints are satisfied as equalities, and this can be interpreted as
meaning that all the available raw material and machine time is utilised.

It is clear that this problem could be extended. There could be three or more models
and a corresponding number of non-negative variables. There could be additional
constraints representing market capacity, limitations on packaging facilities, etc. The
problem would still be one of maximising a /inear function of several non-negative
variables which are subject to linear inequality constraints.

The general linear programming problem is that of maximising (or it could be
minimising) a linear function

Z=C1X, 4+ CXy+ .o+ CpX, (1.4)

n

of n real variables x|, x,,..., x,, satisfying the non-negativity conditions

X, 20,x,20,...%,30 (1.5)
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and m linear constraints
a,x, + @ X, +...+a,

Ay X, + ApXy + .o+ Ay X _
(1.6)

A X, + Ay Xy + oo+ Ay X, <K=2b,

S 62

The constraints can be a mixture of the ‘<, *=" or ‘>’ variety. The aim will be to
maximise the objective or perhaps to minimise the objective (if it represents a cost for
example). The values of the b;, ¢;, a;; are assumed to be known constants. They will
often have a physical interpretation in terms of a practical problem as in Example 1.

In matrix notation the problem can be written :

Maximise (or minimise)

z=¢"x, (1.7
where X220 (1.8)
and ' Agx,<=>b ,v (1.9)
. .
where x, = x ? Yisan n x 1 column vector,
x?l

e'=(c,,¢y....C)isal X nrow vector,
5
b = b 2 }is an m x | column vector, which can be assumed non-negative,
b
and A4,= (a'ij) is an m x n matrix.

The suffix 0 on x, and A4, is to be taken to mean ‘original’. The point will be taken up
and made clear in Section 1.3. :

1.2 Graphical Solution o? Two-Dimensional Problems

The two-dimensional example of the previous section served to show how a linear
programming problem could arise from a practical situation and also showed a
graphical method of solution. Through a study of a few other such examples which are
simple enough for us to see ‘what is going on’, it will be possible to bring out certain
general features of linear programming problems whose exploitation can lead.to a
systematic solution procedure.

Example 1
Minimise z=-3x,—4x,
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where x,, x, >0 and

X+ x,<20

—x, +4x,<20
x, >10
X2 S

PQRS is the feasible region in Fig. 1.2. The last two constraints subsume the
non-negativity conditions. z decreases.in the direction

oz
ox, . (3)
_ s LE. .
oz 4
\ox,

The minimum value of z is —68 and arises at R(12, 8 Note that as in the example of
the last section the minimum occurs at a vertex of the feasible region. The optimal
solution is x, = 12, x, = 8 with the minimum of z at —68.

24

20
15

10

-
~ 5 10 15 20 .
\ 1
'\<= 0 " Direction of oo

AN decreasingz -
N

~N

Fig. 1.2
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Sometimes there is more than one optimal solution,

Exanhple 2 b
Minimise z=—6x,—1x,
subject to x,, x, >0
2x,+4x,<9

3x,+ x,<6

) \ Direction of
\Q decreasing z

Fig. 1.3
OABC in Fig. 1.3 shows the feasible region.

6
0z/éx, = —6, ¢z/8x, = —2 and so the vector(
: 2
z. Any point on BC represents an optimal solution. In particular the vertices B(14, 14)
and C(2, 0) represent optimal solutions corresponding to the (one) minimum value of
z=-—12.
Any point on BC can be represented as

\)points in the direction of decreasing

8(14, 11) + (1 — 6)(2,0) = 2 — 46, 136)

forO0 <1 .

For each point the value of z is —6(2 — 16) — 2(148) = —12. There is only one
minimum value of z.
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Sometimes the solution is unbounded.

Example 3
Maximise z = X, + x,

subject to x, >0, x, >0

"2 )
2
\ b
N\
N\
AN
AN
N\
N
\ pirecti9n of
N increasing z
N
AN
N
~ \z=0
Fig. 1.4

The feasible region shown in Fig. 1.4 is unbounded in the direction in which z
increases. There is no finite point in the feasible region at which z attains a maximum.
The solution is unbounded and so is the maximum value z. It is possible in some
problems for an unbounded solution to occur with a finite maximum for the objective.
This would be the case, for example, had the problem been to maximise z’ = x, subject
to the constraints.

Of course, had the problem been to minimise z = x, + x, subject to the above
constraints, there is one finite minimum of z (min) = 1 at A (again a vertex of the
feasible region) where x, = 1, x, = 0. »

Sometimes there is no solution at all because a feasible region does not exist.

Example 4
Minimise z=2x,+ 3x,

subject to x,, x, >0
: X+ x,210

3x,+ 5x,< 15

The constraints are contradictory and have no feasible solution (see Fig. 1.5).



Fundamental Ideas

\ \ . 71
3x, +5x,=15 Xq+x,=10

Fig. 1.5

One or two fairly general features of linear programming (L.P.) problems can be
deduced from the examples already considered. The first is that the feasible region is
always a convex polygon. Even in the case where it was unbounded it was convex on its
closed aspect. The second is that the optimum solution always occurs at a vertex of the
feasible region. In Example 2 where there were several optimal solutions both the
vertices B and C corresponded to optimal solutions.

We shall sce that we can generalise these results. First we show that we can put all
L.P. problems in a standard form. ' )

1 ;3 f A Standard Fbrm for Linear Piogramming Problems

It may appear that L.P. problems can take on a variety of forms with the constraints
a mixture of ‘>’, ‘=" or ‘<’ type. They can all be put into a standard form in which the
objective function is to be minimised anc all constraints take the form of equations in
non-negative variables.

Problems which do not initially confor 1 to this standard form can be brought to this
form quite simply.

{a) Maximising the objective function z = ¢, x, + ... + ¢,x, is equivalent to minimising
the objective function

[
2= X = Oy Xy — e — €y Xy

{b) Inequality constraints.
The constraint 3x, + 2x, — x, < 6 can be put in equation form as

I, +2x,=x,+x,=6

where the slack variable x, is non-negative.
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The constraint x, — x, + 3x, > 10 can be put in equation form as
X, — X+ 3x;—x=10 .

where the slack variable x, is non-negative.

(c) Non-negative variables. .
If a particular variable x, can take on any value then we can write x, = x} — x}
where x} >0and x} >0. ,

Thus bringing 4 problem into the standard form might involve the introduction of
additional variables, (which are still non-negative) into the problem.

Thus following on from equations (1.7), (1.8), (1.9) our most general L.P. problem
can be put in the form

minimise v z=¢c"x (1.10)

where ' x>0 o B (1.11)
and Ax=0>b, withb> 0. (1.12)

If this problem did indeed arise from that given earlier then x will contain the slack
variables as well as the original variables and 4 will contain the coefficients of the slack
variables as weli as the original coefficients.

Thus Example 1 of Section 1.2 can be put in the form

minimise z=-3x,— 4X2
subject to the constraints ‘
’ X, - X, =10
X3 — X = §
X+ X, + X =20
—x, + 4x, +xg=20

and x, >0,i=1,2,...,6.
Example 1 of Section 1.1 can be put in the form

minimise ' z=-2x,—4x,
- subject to the constraints J
o 3x, +4x, +x, - =1700
2x,+ 5x, - +x,=1600

and x; 20,i=1,...,4.
In matrix form the constraints can be written

X,

(3 4 1 o) X (1700)
250 1/\x, ] \1600
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They consist of 2 equations in 4 unknowns. Any non-negative solution of these
constraints is a feasible solution. )

Of course with 2 equations in 4 unknowns we can hope to get a solution (though not
necessarily a feasible solution) by giving two of the variables arbitrary values and
solving for the remaining two. Of particular interest are solutions of this type which arise
by setting two of the variables to zero. Such a solution. if unique, is referred to as a basic
solution. If it is also feasible it is a basic feasible solution (b.f.s.). For the general linear
programming problem with say m linear equation constraints in n variables (m < n) a
" basic solution of the constraints is obtained by setting (n — m) of the variables to zero
and solving the m equations which result for the remaining m variables, provided these
equations have a unique solution. The variables put equal to zero are called the

non-basic variables (n.b.v.). The others are the basic variables and form‘a basis.

For the problem just considered we can select the two non-basic variables in (3) = 6 .

ways. The basic solutions are easily seen to be given by

’

Xy X X X4
1 0 0} 1700 | 1600 | O
2 01} 425 01]-525
3 01}]320) 420 01 A
4 se63|l o 0] 4663 ] C
-5 | -800 0] ~—700 0
6 300 | 200 0 0| B

corresponding to non-basic variables (x,, x,), (x;, x3), (x,, x,), (%3, x3), (X3, X,),
(x5, x,). Of these 6 basic solutions, only 4 are also feasible, and it will be seen that
these solutions correspond to the vertices of the feasible region in Fig. 1.1 with
correspondence as indicated.

_In three dimensions the linear constraints take the form of planes (instead of lines).
The feasible region, instead of being a convex polygon, is a convex polyhedron. An
optimal solution to the problem will correspond to a vertex of this polyhedron since the
contours of the objective function will be planes instead of lines, and the plane cor-
responding to the least value will generally have just one point in common with the
easible region, and this will be a vertex of the convex polyhedron, and will correspond
p an optimal solution of the problem.

We shall see that this particular type of result is quite general. The basic feasible
solutions of a system of m equations in n unknowns correspond to the vertices of the
feasible region. Further an optimal solution, if it exists, corresponds to a basic feasible
solution, and hence a vertex of the feasible region.

1.4 . Some ri-Dimensional Geometry

Before establishing the results just meationed it is.ngcessary to generalise some
geomerric concepts from two dimensions to n dimensions. The two-dimensional
graphical solution method used in Section 1.2 is quite general. However, in n dimensions
)it intaition and ability to visualise the situation is not so clear. We need algebraic
et e iy o ds the geometry. A

A Svot define some terms which allow the concept of a convex set to be understood.

-~

-z A
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