THE SUCCESS OF OPEN SOURCE

= ‘ @
R —

\
\‘\\
Nt .

[

bbbbb

Steven Weber

STEVEN WEBER

The Success of
Open Source

HARVARD UNIVERSITY PRESS
Cambridge, Massachusetts, and London, England
2004

Copyright © 2004 by the President and Fellows of Harvard College
All rights reserved
Printed in the United States of America

Library of Congress Cataloging-in-Publication Data

Weber, Steven, 1961
The success of open source / Steven Weber.
p- cm.
Includes bibliographical references and index.
ISBN 0-674-01292-5 (alk. paper)
1. Open source software. 1. Title.

QA76.76.546W43 2004
005.3—dc22 2003056916

Many of the designations used by manufacturers and sellers to distinguish their
projects are claimed as trademarks. Where those designations appear in this
book and Harvard University Press was aware of a trademark claim, the
designations have been printed in initial capital letters (for example,
Microsoft).

Preface

Several years ago when I began thinking about open source software, I
had to convince just about everyone I talked to, outside of a narrow
technology community, that this was a real phenomenon and some-
thing worth studying in a serious way. I no longer have to make that
case. Open source has become a subject of real interest to a wide-rang-
ing swath of people and organizations. I hope this book will explain to
many of those people how the open source process works and why the
success of open source is broadly significant.

I’'m a political scientist and I worry more about how communities
are governed than I do about technology per se. I became interested
in open source as an emerging technological community that seemed
to solve what I see as very tricky but basically familiar governance prob-
lems, in a very unfamiliar and intriguing way. In the end I've decided,
and I argue in this book, that the open source community has done
something even more important. By experimenting with fundamental
notions of what constitutes property, this community has reframed
and recast some of the most basic problems of governance. At the
same time, it is remaking the politics and economics of the software
world. If you believe (as I do) that software constitutes at once some of
the core tools and core rules for the future of how human beings work
together to create wealth, beauty, new ideas, and solutions to prob-
lems, then understanding how open source can change those pro-
cesses is very important.

I had a huge amount of help and support in writing this book. The

viii » Preface

University of California at Berkeley, the Ford Foundation, the Markle
Foundation, the Social Science Research Council, the Institute on
Global Conflict and Cooperation, and University of California’s Indus-
try-University Cooperative Research Program made bets that I would
produce something valuable. My close friends and colleagues at the
Berkeley Roundtable on the International Economy, Global Business
Network, and the Monitor Group made their bets as well but more im-
portantly gave me the gift of great ideas and probing questions. More
people than I can possibly remember from many different walks of life
read versions of chapters, talked me through sticky problems, and put
up with my sometimes naive questions. I owe particularly large thanks
to Jonathan Aronson, Michael Barnett, David Bollier, Denise Caruso,
Peter Cowhey, Jerome Feldman, Brad DeLong, Rana Nanjappa, Elliot
Posner, Annalee Saxenian, Janice Stein, Mark Stone, Nick Ziegler,
John Zysman, and a group of the best graduate students in the world.
And a special thanks to Michael Aronson and Elizabeth Collins from
Harvard University Press.

And of course I owe the greatest thanks to the open source commu-
nities I have studied and to the people who contribute their time and
energy to that work. I know you weren’t trying to build a huge data set
for some researcher to come in and understand how you were doing
what you were doing. You are just trying to build the best software you
can in the way that makes sense to you. I hope I've done some justice
to that effort in my attempts to understand what makes open source
succeed and why that success matters as much as I think it does.

I want to dedicate this book to my three life partners, who helped
me through every day I worked on it. Even though only one of them
walks on two legs.

0 ~N O O &~ W N B

Contents

Preface

Property and the Problem of Software

The Early History of Open Source

What Is Open Source and How Does It Work?
A Maturing Model of Production

Explaining Open Source: Microfoundations
Explaining Open Source: Macro-Organization
Business Models and the Law

The Code That Changed the World?

Notes

Index

20
54
94
128
157
190
224

275
303

CHAPTER 1

Property and the
Problem of Software

This is a book about property and how it underpins the social organi-
zation of cooperation and production in a digital era. I mean “prop-
erty” in a broad sense—not only who owns what, but what it means to
own something, what rights and responsibilities property confers, and
where those ideas come from and how they spread. It is a story of how
social organization can change the meaning of property, and con-
versely, how shifting notions of property can alter the possibilities of
social organization.

I explain the creation of a particular kind of software—open source
software—as an experiment in social organization around a distinctive
notion of property. The conventional notion of property is, of course,
the right to exclude you from using something that belongs to me.
Property in open source is configured fundamentally around the right
to distribute, not the right to exclude. If that sentence feels awkward
on first reading, that is a testimony to just how deeply embedded in
our intuitions and institutions the exclusion view of property really is.

Open source is an experiment in building a political economy—that
is, a system of sustainable value creation and a set of governance mech-
anisms. In this case it is a governance system that holds together a
community of producers around this counterintuitive notion of prop-
erty rights as distribution. It is also a political economy that taps into a
broad range of human motivations and relies on a creative and evolv-
ing set of organizational structures to coordinate behavior. What
would a broader version of this political economy really look like? This

1

2 « THE SUCCESS OF OPEN SOURCE

book uses the open source story as a vehicle for proposing a set of pre-
liminary answers to that very large question.

The way in is to answer two more immediate questions about open
source. How is it that groups of computer programmers (sometimes
very large groups) made up of individuals separated by geography,
corporate boundaries, culture, language, and other characteristics,
and connected mainly via telecommunications bandwidth, manage to
work together over time and build complex, sophisticated software sys-
tems outside the boundaries of a corporate structure and for no direct
monetary compensation? And why does the answer to that question
matter to anyone who is not a computer programmer?

Let me restate these questions as an observation and two general
propositions that together provoked me to write this book. The obser-
vation is that collaborative open source software projects such as Linux
and Apache have demonstrated that a large and complex system of
software code can be built, maintained, developed, and extended in a
nonproprietary setting in which many developers work in a highly par-
allel, relatively unstructured way. The first proposition is that this is an
important puzzle for social scientists worrying about problems of both
small- and large-scale cooperation (which is just about every social sci-
entist, in one way or another). It is also an important puzzle for any-
one who struggles, in theory or in practice, with the limits to very com-
plex divisions of labor and the management of knowledge in that
setting.

The second proposition is that the open source software processis a
real-world, researchable example of a community and a knowledge
production process that has been fundamentally changed, or created
in significant ways, by Internet technology. Understanding the open
source process can generate new perspectives on very old and essen-
tial problems of social cooperation. And it can provide an early per-
spective on some of the institutional, political, and economic conse-
quences for human societies of the telecommunications and Internet
revolutions,

This book explains how the open source software process works. It is
broadly a book about technology and society, in the sense that changes
in technology uncover hidden assumptions of inevitability in produc-
tion systems and the social arrangements that accompany them. It is
also about computers and software, because the success of open

Property and the Problem of Software + 3

source rests ultimately on computer code, code that people often find
more functional, reliable, and faster to evolve than most proprietary
software built inside a conventional corporate organization. It is a busi-
ness and legal story as well. Open source code does not obliterate
profit, capitalism, or intellectual property rights. Companies and indi-
viduals are creating intellectual products and making money from
open source software code, while inventing new business models and
notions about property along the way.

Ultimately the success of open source is a political story. The open
source software process is not a chaotic free-for-all in which everyone
has equal power and influence. And it is certainly not an idyllic com-
munity of like-minded friends in which consensus reigns and agree-
ment is easy. In fact, conflict is not unusual in this community; it’s en-
demic and inherent to the open source process. The management of
conflict is politics and indeed there is a political organization at work
here, with the standard accoutrements of power, interests, rules, be-
havioral norms, decision-making procedures, and sanctioning mecha-
nisms. But it is not a political organization that looks familiar to the
logic of an industrial-era political economy.

The Analytic Problem of Open Source

Think of a body of software code as a set of instructions for a com-
puter—an artifact, a “thing” in and of itself. In that context, what is
open source software and how is it different from the proprietary soft-
ware products that companies like Microsoft and Oracle build and
sell?

Consider a simple analogy to Coca-Cola.! Coca-Cola sells bottles of
soda to consumers. Consumers use (that is, drink) the soda. Some
consumers read the list of ingredients on the bottle, but that list of in-
gredients is surprisingly generic. Coca-Cola has a proprietary formula
that it will not divulge, on the bottle or anywhere else. This formula is
the knowledge that makes it possible for Coke to combine sugar, water,
and a few other readily available ingredients in particular proportions
with a secret flavoring mix and produce something of great value. The
point is that the bubbly liquid in your glass cannot be reverse-engi-
neered into its constituent parts. You can buy Coke and you can drink
it, but you can’t understand it in a way that would let you reproduce the

4 « THE SUCCESS OF OPEN SOURCE

drink, or improve upon it and distribute your cola drink to the rest of
the world.

Standard economics of intellectual property rights provides a
straightforward account of why the Coca-Cola production regime is or-
ganized this way. The core problem of intellectual property is sup-
posed to be about creating incentives for innovators. Patents, copy-
rights, licensing schemes, and other means of “protecting” knowledge
ensure that economic rents are created and that some proportion of
those rents can be appropriated by the innovator. If that were not the
case, a new and improved formula would be immediately available in
full and for free to anyone who chose to look at it. The person who in-
vented the formula would have no special and defensible economic
claim on a share of the profits that might be made by selling drinks en-
gineered from the innovation. And so the system unravels, because
that person no longer has any rational incentive to innovate in the first
place.

The production of computer software is typically organized under
a similar regime, with a parallel argument behind it. You can buy
Microsoft Windows and you can use it on your computer, but you can-
not reproduce it, modify it, improve it, and redistribute your own ver-
sion of Windows to others. Copyright, licenses, patents, and other le-
gal structures provide a layer of legal protection to this regime, but
there is an even more fundamental mechanism that stops you from do-
ing any of these things. Just as Coca-Cola does not release its formula,
Microsoft and other proprietary software makers do not release their
source code.

Source code is a list of instructions that make up the “recipe” for a
software package. Software engineers write source code in a program-
ming language (like C++ or FORTRAN) that a human can read and
understand, as well as fix and modify. Most commercial software is
released in machine language or what are called “binaries”—a long
string of ones and zeros that a computer can read and execute, but a
human cannot read.? The source code is basically the recipe for the bi-
naries; and if you have the source code, you can understand what the
author was trying to accomplish when she wrote the program-—which
means you can modify it. If you have just the binaries, you typically
cannot either understand or modify them. Therefore, shipping binary
code is a very effective way for proprietary software companies to con-
trol what you can do with the software you buy.

Property and the Problem of Software + §

Proprietary source code is the touchstone of the conventional in-
tellectual property regime for computer software. Proprietary source
code is supposed to be the fundamental reason why Microsoft can sell
Windows for around $100 (or why Oracle can sell its sophisticated data
management software for many thousands of dollars) and distribute
some of that money to programmers who write the code—and thus
provide incentives for them to innovate,

Open source software simply inverts this logic. The essence of open
source software is that source code is free. That is, the source code for
open source software is released along with the software to anyone and
everyone who chooses to use it. “Free” in this context means freedom
(not necessarily zero price). Free source code is open, public, and
nonproprietary. As Richard Stallman puts it, freedom includes the
right to run the program for any purpose, to study how it works and
adapt it to your own needs, to redistribute copies to others, and to im-
prove the program and share your improvements with the community
so that all benefit.’ Programmers often explain it with simple short-
hand: when you hear the term free software, think “free speech” not
“free beer.” Or, in pseudo-French, software libre not software gratis.

The core of this new model is captured in three essential features of
the semiofficial “Open Source Definition™

* Source code must be distributed with the software or otherwise
made available for no more than the cost of distribution.

* Anyone may redistribute the software for free, without royalties or
licensing fees to the author.

* Anyone may modify the software or derive other software from it,
and then distribute the modified software under the same terms.4

If you array these terms against the conventional intellectual property
story for software, open source software really should not exist. Or at
best it should be confined to small niches outside the mainstream in-
formation technology economy, perhaps among a tightly bound group
of enthusiastic hobbyists who create and share source code for the love
of the challenge.

Here’s the empirical problem: Open source software is a real, not
marginal, phenomenon. It is already a major part of the mainstream
information technology economy, and it increasingly dominates as-
pects of that economy that will probably be the leading edge (in tech-
nological and market terms) over the next decade. There exist thou-

6 + THE SUCCESS OF OPEN SOURCE

sands of open source projects, ranging from small utilities and device
drivers to office suites like OpenOffice, database systems like MySQL,
and operating systems like Linux and BSD derivatives.’ Linux and
Apache attract the most public attention. Apache simply dominates
the web server market—over 65 percent of all active web sites use
Apache.® Nearly 40 percent of large American companies use Linux in
some form; Linux is the operating system for more than a third of ac-
tive web servers and holds almost 14 percent of the large server market
overall.”

Sendmail is an open source email transfer and management pro-
gram that powers about 80 percent of the world’s mail servers. BIND is
an open source program that acts as the major addressing system for
the Internet. If you use Google to search the web, you use a cluster of
10,000 computers running Linux. Yahoo! runs its directory services on
FreeBSD, another open source operating system. If you saw the movies
Titanic or Lord of the Rings, you were watching special effects rendered
on Linux machines that are running at companies like Disney, Dream-
Works, and Pixar. Increasingly, open source software is running major
enterprise applications for large and small corporations alike. Ama-
zon, E¥Trade, Reuters, and Merrill Lynch are examples of companies
that have recently switched backend computer systems to Linux. Large
parts of the U.S. government, including the Defense Department, the
Department of Energy, and the National Security Agency, work with
open source software. National, state, and municipal governments
from Germany to Peru to China are considering and in some cases
mandating the use of open source software for e-government applica-
tions. IBM is now a major champion of open source after publicly de-
claring in 2001 a $1 billion commitment to developing technology and
recasting central parts of its business models around Linux and other
open source programs. Hewlett-Packard, Motorola, Dell, Oracle, Intel,
and Sun Microsystems have all made serious (if less radical) commit-
ments to open source software.

The fact that Linux is probably not running your desktop computer
today does not diminish the significance of what is happening with
open source. That is partly because more PCs and computing appli-
ances will run Linux and open source programs in the next few years.®
But Windows on your desktop is not important for a more fundamen-
tal reason, and that is because your PC desktop is becoming much less

[I 1

Property and the Problem of Software + 7

important. Even Microsoft knows and acknowledges this—that recog-
nition is at the heart of the company’s move toward web services and
the “dot-net” architecture. Sun Microsystems claimed a long time ago
that “the network is the computer” and the technology is upholding
that claim. Your desktop is like the steering wheel to your car—impor-
tant, but not nearly as important as the engine. The engine is the
Internet, and it is increasingly built on open source software.

Computer scientists and software engineers value Linux and other
open source software packages primarily for their technical character-
istics. But as open source has begun over the last several years to attract
more public attention, it has taken on a peculiar mantle and become a
kind of Internet era Rorschach test. People often see in the open
source software movement the politics that they would like to see—a
libertarian reverie, a perfect meritocracy, a utopian gift culture that
celebrates an economics of abundance instead of scarcity, a virtual or
electronic existence proof of communitarian ideals, a political move-
ment aimed at replacing obsolete nineteenth-century capitalist struc-
tures with new “relations of production” more suited to the Informa-
tion Age.

It is almost too easy to criticize some of the more lavish claims. Like
many things about the Internet era, open source software is an odd
mix of overblown hype and profound innovation. The hype should be
at least partly forgiven. The open source phenomenon is in some ways
the first and certainly one of the most prominent indigenous politi-
cal statements of the digital world. Unlike the shooting star that was
Napster, the roots of open source go back to the beginning of modern
computing; it is a productive movement intimately linked to the main-
stream economy; and it is developing and growing an increasingly self:
conscious identification as a community that specifies its own norms
and values.

Some of those values sound extraordinarily compelling, particularly
when compared to darkly dystopic visions of the Internet-enabled soci-
ety as one in which computer code leads to a radically privatized, per-
fectly regulated, tightly controlled world in which technology enforces
upon the many the shape of a market that is preferred by and benefits
the few. In the widely read book Code and Other Laws of Cyberspace, Law-
rence Lessig repeatedly invokes the idea of open source as a major
challenge and counterpoint to the possibilities for government and

8 + THE SUCCESS OF OPEN SOURCE

corporate control of the architecture that will help shape the e-society.
He implies that this is part of an almost epochal battle over who
will control what in the midst of a technological revolution, and that
open source is on the right side of that battle.? Lessig is hardly alone
in this view.!® And it is an important point to make, although I will
show that the situation is considerably more complicated than “open=
good, closed=bad.” To get to a more nuanced understanding of
what is at stake, we first should confront in detail the problem of how
open source comes to be, what its boundaries and constraints are,
what makes it work as a social and economic system, and what that sys-
tem in turn makes possible elsewhere. That is the purpose of this
book.

The Political Economy of Open Source

My starting point for explaining the open source process is the lens of
political economy. I will situate the puzzle to start in modern concepts
from political economy and then say more precisely why open source
challenges some conventional theories about the organization of pro-
duction, and how it affects and is affected by society. This lens repre-
sents a choice: There are other starting points you could choose; and
the choice does matter in terms of where you come out as well as
where you start. One of the strengths of the political economy perspec-
tive in fact is that it can naturally open up to a much broader set of dis-
cussions, and I will do so particularly in the conclusion to the book.
The point is to take the political economy perspective as a useful focus-
ing device for a discussion of a very complex set of human and social
behaviors.

One of the foundational problems of political economy is collective
action. People do not easily work together in large groups toward a
Jjoint goal. There are many reasons for this: People have different pref-
erences around the goal, they have different tolerances for costs and
effort, they find it difficult to evaluate the importance of others’ and
their own contributions, and in many cases they would come out bet-
ter if they were able to sit back and allow somebody else to contribute
in their place. The classic modern statement of the problem is Mancur
Olson’s book The Logic of Collective Action. Olson’s arguments have
been refined over time, but the core logic has become almost the

§ H
| i [|

Property and the Problem of Software + 9

equivalent of an instinct for people who think about politics and orga-
nization. And thus the natural attraction of the open source process to
this conceptual frame: Intuition tells us that thousands of volunteers
are unlikely to come together to collaborate on a complex economic
project, sustain that collaboration over time, and build something that
they give away freely, particularly something that can beat some of the
largest and richest business enterprises in the world at their own game.

Marc Smith and Peter Kollock took that intuition a step further
when they wrote about Linux as “the impossible public good.”2 Linux
is nonrival and nonexcludable. Anyone can download a copy of Linux
along with its source code for free, which means it is truly non-
excludable. And because it is a digital product that can be replicated
infinitely at zero cost, it is truly nonrival. For well-known reasons that
track with the intellectual property rationale, public goods tend to be
underprovided in social settings. In other words, it is hard for a com-
munity of human beings to organize and sustain organization for the
production and maintenance of public goods. The situation with
Linux ought to be at the worse end of the spectrum of public goods
because it is subject additionally to “collective provision.” In other
words, the production of this particular good depends on contribu-
tions from a large number of developers. Stark economic logic seems
to undermine the foundations for Linux and thus make it impossible.

The elementary political economy question about open source soft-
ware is simple. Why would any person choose to contribute—volun-
tarily—to a public good that she can partake of, unchecked, as a free
rider on the effort of others? Because every individual can see that not
only her own incentives but the incentives of other individuals are thus
aligned, the system ought to unravel backward so no one makes sub-
stantial contributions, and the good never comes to be in the first
place.

But Linux is also an impossibly complex good. An operating system
is a huge, complicated, intricate piece of code that controls the basic,
critical functions of a computer. Everything depends on it. It is the
platform on which applications—be they word processors, spread-
sheets, databases, or anything else—sit and run. To design a robust
operating system and to implement that design in software code is a
gargantuan task. Testing, debugging, maintaining, and evolving the
system over time are even harder. Computer users will run an operat-

10 + THE SUCCESS OF OPEN SOURCE

ing system in a nearly infinite number of settings, with functionally
infinite permutations of behavior, leading to infinite possible paths
through the lines of code. Complex software is not like a book, even
the longest and most complex book ever written. It is more like a living
organism that must continually adapt and adjust to the different envi-
ronments and tasks that the world puts in front of it.

There was a time when a single determined individual could write
the core of a simple operating system for a primitive computer. But
given the demands of computer applications and the capabilities of
hardware technology at present, that is no longer conceivable. The
task needs to be divided somehow. This immediately raises a second
core political economy question, about coordination of a division of la-
bor. The standard answer to this question has been to organize labor
within a centralized, hierarchical structure—that is, a firm. Within the
firm an authority can make decisions about the division of labor and
set up systems that transfer needed information back and forth be-
tween the individuals or teams that are working on particular chunks
of the project. The boundaries of the firm are determined by make-or-
buy decisions that follow from the logic of transaction cost economics.
The system manages complexity through formal organization and ex-
plicit authority to make decisions within the firm as well as price coor-
dination within markets between firms.3

Even this caricatured model of industrial-era organization for pro-
duction is hardly perfect. It is expensive and sometimes awkward to
move information and knowledge around, to monitor the actions of
labor, and to enforce decisions on individuals. No one says that hierar-
chical coordination in a complex production task like software devel-
opment is efficient, only that it is less inefficient than the alternatives.
And it does seem to work at some level. Within companies, the job gets
done and complex software—imperfect, buggy, and expensive, but
functional—does get produced. And thus a third core political econ-
omy question arises: Is this an inevitable way of organizing the produc-
tion process for software (and, perhaps by implication, other complex
knowledge goods)? Is it the best way?

Eric Raymond, computer hacker turned unofficial ethnographer of
the open source movement, draws a contrast between cathedrals and
bazaars as icons of organizational structure. Cathedrals are designed
from the top down, then built by coordinated teams who are tasked by

Property and the Problem of Software + 11

and answer to a central authority that implements a master plan. The
open source process seems to confound this hierarchical model. Ray-
mond sees instead a “great babbling bazaar of different agendas and
approaches.” Yet this bazaar has produced software packages that de-
velop “from strength to strength at a speed barely imaginable to cathe-
dral builders.”*

There is some hyperbole here, and the imagery of chaos and invisi-
ble hands in the bazaar misleads by distracting attention from what are
the real organizational structures within open source. But focus for
the moment on Raymond’s core observation. Many computer pro-
grammers believe that Linux and other open source software packages
have evolved into code that is superior to what hierarchical organiza-
tions can produce. The quality of software is to some degree a subjec-
tive judgment; and like “good art,” a lot depends on what you want to
do with the software and in what setting. But the technical opinions
are serious ones. Ultimately, so are the opinions expressed in market
share, and particularly in the success of open source software in taking
away market share from proprietary alternatives.

To summarize and set the problem, open source poses three inter-
esting questions for political economy:

* Motivation of individuals: The microfoundations of the open
source process depend on individual behavior that is at first
glance surprising, even startling. Public goods theory predicts
that nonrival and nonexcludable goods ought to encourage free
riding. Particularly if the good is subject to collective provision,
and many people must contribute together to get something of
value, the system should unravel backward toward
underprovision. Why, then, do highly talented programmers
choose voluntarily to allocate some or a substantial portion of
their time and mind space to a joint project for which they will
not be compensated?

* Coordination: How and why do these individuals coordinate their
contributions on a single focal point? The political economy of
any production process depends on pulling together individual
efforts in a way that they add up to a functioning product. Au-
thority within a firm and the price mechanism across firms are
standard means of coordinating specialized knowledge in a

i F 1

