AND MODELS OF
COMPUTATION

—

An Introduction to Computer Science

} Michael E. Burke

" L.Roland Genise

AND MODELS OF
COMPUTATION

- An Introduction to Computer Science

Michael E. Burke
San Jose State Unive -sity

L. Roland Genise
" SandJose Unified School District /

A
\A 4
Addison Wesley Publishing Company)
1 Menlo Park, California * Reading, Massachusetts
Don Mills, Ontario *Wokingham, England

Amsterdam ¢ Sydney ¢ Singapore ¢ Tokyo
Madrid ¢ Bogota ¢Santiagn ¢ €~= ¥

Ws dadigate this book to

Desnng, Katie, and Kevin
Maliss, bivig, Valerie, Roland, Ronnie, and Lisa
MEB.

LB.G

i . is published by the Addison-Wesley INNOVATIVE
e .

Dueign #id Production by TechArt,
S84 ¥enbtiseo, California.

 vaperved. No part of this publication may be reproduced, stored in a
stridvgl system, or transmitted, in any form or by any means,
algyéruinjs, Mechanical, photocopying, recording, or otherwise, without
thy prlor written permission of the publisher. Printed in the United States
of Amerisp. Published simultaneously in Canada.

fs?-um © 1987 by Addison-Wesley Publishing Comparly, Inc. All
rwbrl

£38w0-@01-20791-5
ABUPEFGHLIKL-AL-8909876

Foreword

About the Text

The goals of Logo and Models of Computation are to provide an
introduction to computer science, to illustrate the relationship of
computation to mathematics, to aid in the development of a useful
problem solving- discipline, and to provide an intellectual framework in
which new concepts in computer science can easily be assimilated. The
Logo programming language is considered by us to be the ideal vehicle to
reach these goals.

The major themes of the text include understanding the difference
between functional programming and procedural programming,
appreciating and making use of models of computation, thinking about
problem solving at various levels of abstraction, and using symbolic
computation.

The functional view of programming is characterized by defining
operations that produce a result without modifying anything in the
computational environment. This style of programming parallels the
mathematical concept of function. Furthermore, the mathematical
model of simplification and substitution provides a simple way to
describe how a computer carries out a computation. This in turn provides
an appreciation of the tools of mathematics. The tools of functional
programming consist of recursion, conditional branching, and function
application. Coupled with the flexibility of lists in the representation of
data, the student discovers a conceptually simple form of computation
that is very powerful. The concept of recursion is closely related to
mathematical induction and Logo provides a very nice environment to
discuss mathematical induction.

The procedural view of programming is characterized by defining
procedures that execute sequences of statements designed to change the
state of one or more objects in the programming environment. The
assignment statement is the primary modifier of the world. The
substitution and simplification model of computation does not hold up in
this setting, and we must turn to another model that views computation as
a sequence of states. .

Preblem solving involves thinking about a problem at several levels
of abstraction. Programming can be especially useful in learning this

vi

art, but there are two important other ingredients that must be present:
The language must support programming at various levels, and the
person guiding the exploration of a problem must be able to point out that
this is indeed what is happening.

As an example, suppose that the problem concerns creating a game.
One aspect is that the roll of a pair of dice will determine a player’s
options. The ladder of problems associated with the main task is as
follows:

How is the roll of two dice going to be used?

How do you obtain and represent the roll of two dice?

How do you obtain and represent the roll of one die?

How do you generate a random number in a particular range
(an integer between one and six in this case)?

5. How do you generate a random integer in Logo?
»

A

The problems are listed in a top-down fashion. Each can be attacked
independently of the others. As long 4s the ladder of subproblems is
understood, the order in which they are solved does not matter. In fact
each task can be handled by a different person. Person 1 will say to
person 2, “Give me two numbers representing the roll of two dice and Il
handle the rest.” Person 2 tells person 3, “Give me a way to get the roll of
" one die, and I'll handle the rest.” Person 3 tells person 4, “Give me a way
to generate a random number in a particular interval, and I'll handle
the rest.” Finally, person 4 tells person 5, “Give me a way to generate a
random integer in Logo, and I'll handle the rest.”

The problem just described will not be solved until all subproblems
have been solved, but it does not have to be solved in a top-down fashion or
a bottom-up fashion. A middle-out, or “do the even numbered
subproblems first,” works just as well. In fact, the problem solver is most
likely to start with the subproblem he or she understands k ss..

Logo supports this concept of problem solving better than either
FORTRAN or Pascal. BASIC does not support it at all. We have more to
say about this later in this preamble.

In the body of the text, we sometimes attack problems at the very
bottom. This means we are learning about the level of support provided by
Logo. At other times, we attack a problem in the middle. This means that
it is only after we solve the problem at hand that we discover the real
problem. This process repeated itself several times during the writing of

book. Theté dte a coapld of cisés where we knew what we were
§ the stirt. In this eiss the problél was carefully outlined
tiitpleniented it 4 top-down fishion. ‘

Thé ‘emphasis of the applications and programs is on writing
programs that are symbolic in nature—for example, the manipulation of
g&theinatical objects Siich 48 sets; rutional humbers, and polygons. In

& case of polygons, we do ot mesin drawitig polygons but matiipulating
thietn as one would manipulate the turtle. For example, we want to be able
to move them arcund and change their sizes. The properties of polygons
Eré separated frem their pictures. They are called grophical objects. :

Vfe desctibe programs that deal with honmathematical objects as
Pt We experiment with creating a multiple turtle world on top of the
#5818 Logo turtle. We aglve the Towers of Heinol problem by writing
prasrdtnid that tlanipulate disks and towers. We look at ghe
Rispicharies and cannibals problem in symbolic terms as well.

_“the applications and programs have been thosen to promate sbatraet
RiFEAg, tb broaden the view of computation, and to prepard for further
:gﬂj" in LISP, mathematice, artificial intellipence, and computer

@éante. - '

Wh; 18 thls Book For?

~ The materisl in this book has been used successfully as an
wittrodaction to computer science in a course for all students (as well as
eompater sciehce majors) at San Jose State University and as a text for
in-service teacher-training institutes, high school computer courses, and
sothe middle school computing courses.

For the dhiversity level course in computer science, the entire book
ean be coveréd in an eighteen-week semester. Néw thinking will need to
be done if students have had previous exposure to BASIC and Paseal.
Bomé do not see the light until the last week of the course. For those whe
choose to go on to a course in LISP and Artificial Intelligence, the
rewards are gredt. The transition is smooth and natural. The usual
imitial reactions is, “This is just like Logo.” -

LISP and Artificial Intelligence are currently viewed as advanced
coursed in most college curriculums. By the time students take these
courses, they.have been 8o indoctrinated in the ways of BASIC,

wii

FORTRAN and Pascal that they become lost in a forest of pafeniieses,
and the transition to this rich and exciting field is a difficult on@ &t buit,
The introductory course and this book were begun because of the newr
ovérwhelming difficulties encountered in the LISP and Al coufiés: The
tran&i‘ilﬁon into these courses is now tuch easier for both studsithé snd
instructors.

The book has been used in three in-service teacher instituted. The
institutes consisted of four weeks of coursework on Logb, mathefhaties;
and problem solving and nine follow-up sessions during the school yeit¢.
When used in this manner, it i8 necéssary to mové il
(emphasizing the relationship between Logo and mathematics) iy
the first part of the book and get into the interesting problems in thé
part of the book. .

The first thing to admit in this context is that you cannot “‘2?
advanced programmers in four weeks. The next thing to admit it
you do not need to. Teachers are in the enviable position of beinjf)
learn while they teach. What they need are reasons to expléfe s
experiinent and a solid foundation to lean on. In four weeks they lﬁ!‘ﬂ t
program in Logo and experience a large amount of the materisl given in
the introductory course. If they are motivated they will embark on
teaching a variety of projects depending on their individual téathing
situation and interests.

We believe the prospective teacher should also be exposed ts this
taterial. But this presents a different set of problems and needs anvthet
aipproach. The mathematical background of this group usually watied
widely. The emphasis again should be on the relationship of computétion
and mathematics and problem solving, and the material should be
presented in a deliberate fashion.

- We do not belisve it is important for every teacher (even every
mathematics teacher) to be skilled in programming and problem
solving, but we do think that every. school should have such a teacher. We
algo feel that every teacher shionld be exposed to using the computer as a

" problem-solving tool. ‘

o - Until we have teachers lkilled;n using ~t_,ha",etnll’[)ui'.e‘r for problem
. solving, computational literacy will eontinue to mean; how to turn on a

¥ computer, how to insert a diskette ih the-disk drive, how to be drilled by a

- computer, how to run a program, and how to write a program. The
situation parallels that of mathematics in the elementary #thool. Since

few (if any) elementary schools that have a mathematics teacher, it is not
at all surprising that mathematics is vnewed by most of the world as the
mastery of arithmetic.

- The material can be used at the middle school, and the emphasis is
the same as at the university level. However, the material is covered at a
much slower pace, and time is taken to explain and explore
mathematical concepts that are new to these students. It is as much a
course in mathematics as in computation.

The material is very appropriate for an introduction to computer
science at the high school level. The only difference between high school
and college use would be in the rate of coverage.

There are no mathematics prerequisites to the text, but there are two
exercises that require trigonometry (they are footnoted), two projects
(sections 9.7 and 9.8) that require some calculus, and the last two sections
of Chapter 4 assume knowledge of graphing quadratic functions (algebra
I). This material can be easily omitted. If a student is taking calculus
simultaneously, sections 9.7 and 9.8 should definitely be covered. The
presentation of the material is demgned to solidify and expand .the
student’s mathematical background, and is valuable in supplementmg'
the mathematics curriculum.

About the Language

The most commonly used programming languages on
microcomputers and hence in the public schools, BASIC, and Pascal, do
not have the sophistication or the flexibility to develop the kinds of skills
we have been talking about. More importantly, these languages
encourage pnmltxve levels of problem-solving techniques that tend to
Limit a person 8 ability to think on higher levels of abstraction.

The first programmmg language learned has a strong influence in
shaping a person’s thinking processes, and higher levels of thinking
about a problem are difficult to assimilate if the current frame of
reference is a primitive one. Thinking about problems at various levels -
of abstraction is a major theme of the book. BASIC provides-the mosi
primitive level of programming of any of the so-called high-level
languages and teaches primitive levels of thinking. Programming in
Pascal requires more thinking about writing syntactically correct
programs than thinking about how to solve the problem at hand. The data
structures of Pascal are also not flexible enough to allow easy
representation of symbolic data. S

Logo is a direct descendant of a family of languages beginning with
LISP in 1959. These languages have been used in the implementation of
our most sophisticated programming applications. As a result, Logo has
inherited a good deal of the flexibility and sophistication of these
languages.

Since many versions of Logo exist (the fundamental concepts are in
all of them) and there is no agreed-upon common subset, we are forced to
choose a particular version to describe in detail. We have chosen Apple
Logo because it can be used with the 64K Apple II Plus computer. It is also
appropriate to use the text with Apple Logo II (for Apple Ile and Ilc users),
IBM Logo (for IBM PC-compatible users), and Atari Logo. In fact,
students having these systems at home will encounter no difficulty in
adjusting. Appendixes C and D describe the differences encountered if
Apple Logo II or IBM Logo is used with the text. Appendix E describes all
primitives in Apple Logo, Apple Logo II, and IBM Logo. Experience has
shown that students using other versions of Logo (MIT Logo from
Terrapin and Krell, or Logo for the Macintosh from Micro-Soft) will face
some adjustment of their programs, but without any major difficulty.

We are primarily interested in concepts of computation, and not in
memory limitations or execution speed. Someday, Logo compilers will
exist and the speed limitation will go away, and next year’s hardware
will solve today’s memory limitations. We also are not overly
concerned about the efficiency of our programs, although we do include a
few examples illustrating more efficient alternatives. Usually, efficient
programs hide the problem we are solving and, as a general rule,
efficiency should not be considered until a working program exists.
Frequently, inefficiencies and their corrections will jump out at you
once a program has been written.

Some Notes on Presenfaﬁon

1. The MAKE statement is not introduced until Chapter 6. We hesitated
even to introduce it this early, but some programs would be
unnecessarily complicated if we had not. Besides the fact that MAKE is
widely misunderstood, gettng students to fully understand and
appreciate recursion is far easier if they do not have MAKE at their
disposal. This is especially true of students who have been exposed to
BASIC. If you allow BASIC programmers the use of MAKE, their
programs will look just like BASIC programs every time. Furthermore,

simple and elegant models of computation are not possible once the
assignment operation is introduced.

2, We uge SHOW to display valuss because one never knows what kind
of an object (a word or a list) is returned by an expression that is
PRINTed. It seems only to add to the confusion about what a particular
expression has computed. '

3. Confusion always reigns when OUTPUT is introduced. Many
students have difficulty learning the difference between procedures that
SHOW a4 result and functions that OUTPUT a result. Students need to be
encouraged to define functions that OUTPUT a value rather than
. procedures that SHOW a result. ¥f a value is displayed rather than

returned, the profram cafnot be ealled by another program that would

like to use the value in a further computation. The contrast is an effective
~ way to make thé concépt of function a real one for the student.

4. The student needs to hecome comfortable with the Logo environment
agrly in the course. Chapter 2 describes the entire Logo environment as a
eollection of modules, and is presented in one gigantic dump to separate
it from the cenitral ideas presented in the rest af the text. In the university-
level eourse it is covered quickly to provide an overview of thc
environment and is used as a reference for details when needed in n
program. It can algo be covered in g leisurely manner in a slower-paced
course, éJlowing tha student to experiment with and obtain gkills in
using the edjtor; writing programs that obtain inpat from the keyboard,
displaying tést, and managing the workspace and files. Chapter 2 is alsq
the chapter whei'e the differences in the various versions of Logo are tie
5. In deseribing the inputs to a procedure or function we use the
following notation: . :

- number indicates that the imput value must be a nimber.
- integer indicates that the input value must be an integer.
. word indicates that the input value must be a word. This includes

. numbers. : B
kst indicates that the input value must be a list. ,
object indicates that the input value must be a list or a word, '
name indicates that the input value is a word that names something
other than a number—for example, a procedure or a function.
filename indicates that the input value is a word that names a file.

6. The IF statement is not introduced until Chapter 4. The effect is to
delay “interesting” programs until that time. This is a conitibus
decision because there is already a lot of information that needs to be
covered and the concept of conditional control deserves full attention
without distracting side issues. Also, the student will more fully
appreciate its significance. The instructor may want to introduce it
informally at an earlier time if pressed to do 8o by the students. The
assignment statement (MAKE) should not be introduced earj&!*ln fact,
one might want to cover parts of Chapters 7, 8, and 9 before doiag-Chapter
6. .

7. Chapters 7 and 8 are independent of each other. If thare is not snough
time in the course to cover both chapters; choose whiehl to eliminate based
upon the emphasis of the course. Chapter 7 is more appropriats in a class
that emphasizes the development of problem-solvmg skﬂls, Chapter 8 is
more appropriate for computer seianee majors,

8. Chapter 9 consists of projects of varying s.izen and can be covered
much earlier. Here is a guide to background needed prior to doing the
projects:

a. Sections 9.2, 9.3, and 9.4 can be covered aﬁér Chapﬁer 4,
b. Section 9.5 requires information from Chapters 6 and 8.
c. Section 9.6 can be covered aftet Chaptotﬁa

d. Sechon597and98mnbeeomdaﬁer0hapter4prov1dedthatthe
student hag had some calculus (differentiation). :

9. The material in Appendix A:nrvea as an introduction to the theory of
computation. It covers eomputability and proving the correctness of
programs. The mathematical concepts introduced and used in this
section are informal proofs, ineluding proofs by induction.

- 10. The word operation is commonly associated with the arithmetic

operations +, =, », and /. We use the term operation synonomously with
the word functwn

xiii

Acknowledgments

We would like to thank the many people who have helped in the
development of this book.

Dr. Barbara Pence and Dr. Lynne Gray provided lots of encour-
agement as well as a lot of constructive criticism of the text. As strong
proponents of critical thinking and problem solving, they saw value in
the text for mathematics education and insisted on using the text as part
of the core for three one-year inservice programs for teachers of
mathematics given at San Jose State University from 1984 through 1987.
This provided us with the opportunity to use the material in another
setting that proved to be extremely satisfying. They also introduced me to
a large number of warm, dedicated, and enthusiastic K-14 teachers who
were in the process of expanding their own critical thinking and
problem-solving skills in mathematics.

Dr. Craig Smorynski wrote the appendix on theory and abstraction.
This material explores the theoretical side of computer science using .
mathematics appropriate for high school students anticipating further
study in mathematics or computer science. We regard this material very
highly because it links computer science to mathematics, and we expect
this bond to become stronger. Dr. Smorynski also aided greatly in
making our use of the English language more effective.

Dr. John Mitchem carefully read the text and taught the introductory
course in computer science at San Jose State using a preliminary draft.
Many of his suggestions on pedagogy have been incorporated.

We are especially indebted to the teachers who have participated in
the inservice programs and who keep coming back for more. They
provided most of the motivation to finish the book. The students in our
classes, in addition to being another testing ground, were a source of
ideas as well. They had to cope with the frustrations of trying to make
sense out of incomplete, often buggy, preliminary versions of the text.
Their input was most valuable. Their questions led to new insights and
their expressions told us what worked and what did not—we were all
learning together. Specifically, we would like to mention Ronnie Genise
who donated uncountable hours in writing, testiig, and debugging Logo
programs used in our courses as well as giving us his reactions to
préléminary versions of the text. He always came up with the answers to

our technical problems. We also thank Donna Price for volunteering to
put together the appendix of three versions of Logo primitives.

We thank the faculties and administrators of the Department of
‘Mathematics and Computer Science at San Jose State and Steinbeck
Middle School for giving us the opportunity and encouragement to test
our ideas in the classroom.

Most of all, we appreciase the support and tolerance of our families
throughout this writing project.

M.E.B.
L.R.G.

Contents

Foreword vi
Acknowledgments xiv

Chapter 1 The Logo Calculator

This chapter describes how Logo evaluates expressions and
introduces words and lists as the objects used in Logo computations. The
primitive operations used with these objects are introduced along with the
simplification model for computation. The concept of binding powers is
used to clarify the order of evaluation in expressions containing both
infix and prefix operations.

1.1 Introduction 1
1.2 Logo Expressions and Their Evaluation 3
1.3 Some Terminology 10
1.4 Computing With Numbers 12
1.5 More on Evaluation of Expressions 15
1.6 Computing With Weords 27
1.7 Computing With Lists 30
1.8 Defining Functions and Procedures H
1.9 Summary of the Simplification Process 39
Chapter 2 The Logo Environment

This chapter introduces the rest of the Logo programming
environment as a collection of modules. It is an overview of the system.
You may want to spend considerable time investigating particular
modules at this time, or you may prefer simply to use it to gain an overall
view of Logo.

21 Introduction

2.2 The Toplevel Module
2.3 The Text Screen Module
2.4 The Reader Module

25 The Workspace Module
2.6 The Editor Module

2.7 The File System Module
2.8 The Simplifier Module
29 Memory Layout

EIABJLERBE

(L1

Chapter 3 Extending Logo

This chapter describes the graphics capabilities of Logo and
introduces recursion. Proceduzal and functional programming are
discussed. OUTPUT is contrasted with SHOW. The simplification and
substitution mcdel is expanded to include user-defined operations and
the REPEAT procedure.

3.1 Introduction T
3.2 The Turtle 73
3.3 The Graphics Screen 82
3.4 Defining Procedures for the Turtle 86
3.5 The Simplification of User-Defined

Functions and Procedures 89
3.6 The Simplification of Repeat 91
3.7 Recursive Procedures 93
3.8 Procedures versus Functions 97
3.9 Program-Defining Programs 102

Chapter 4 The Ultimate in Computationail Power

This chapter introduces the conditional form of control and turns our
attention to writing recursive programs. The simplification and
substitution model is used extensively to aid in the understanding of
recursion. The last three sections describe a significant project
involving list processing and graphics.

4.1 Introduction 104
4.2 Recognizers 104
4.3 The IF Procedure 109
4.4 Counting Recursion 112
4.5 List Recursion 116
4.6 Piecewise-Defined Functions 121
4.7 Stopping Recursive Turtle Procedures 125
4.8 Mixing Turtles and Lists 128
4.9 Graphing Functions 132

4.10 More on Graphing Functions 138

ii

Chapter 5 Level Diagrams: A Model for
Understanding Re_(_:ursion -

The level-diagram model of computation is introduced and used to
describe a streamlined execution of Logo programs. It also adds a new
medium in which to view recursion. Several new operations are defined
to illustrate recursion. Many exercises are provided to give practice in
writing recursive functions.

5.1 Introduction : 142
5.2 Level Diagrams 142
5.3 Modeling Recursion with Level Diagrams 148
5.4 Some List Utility Functions 153
5.5 Full Recursion 158
5.6 Some Efficiency Considerations 166
5.7 Tail Recursion 173
Chapter 6 Variables

Global and local variables are introduced with a full explanation of
the Logo assignment statement. Guidelines for using local and global
variables are given along with appropriate warnings. A programming
application that maintains a telephone directory is described illustrating
the appropiiate use of global variables. Writing programs dealing with
the mathematical concept of set are presented itlustrating the use of local
variables. Our models of computation can not deal with the assignment
statement and the state diagram model is introduced to cope with the loss.

6.1 Introduction 178
6.2 Global Variables , 178
6.3 The Dynamic Scoping Rule 183
6.4 The MAKE Statement 189
6.5 Telephone Directory Program 200
6.6 An Interactive Telephone Directory Program €@
6.7 Local Variables 208
6.8 Procedural vs. Functional Programming 210

6.9 Sets as Lists 213

iii

Chapter 7 Programming with Graphical Objects

in this chapter we create programming environments that deal with
- graphical objects such as multiple turtles and polygons. Property lists
*#4 b*égented as an alternative to global variables. The Towers of Hanoi
#:3%%em is described in functional terms (returning a list of moves
&%nng a solution) and in terms of programming with graphical objects.

74 Introduction
7.2 The Turtle as a Collection of Properties
74 Multiple Turtles
‘A Froperty Lists
78 Piogremming with Multiple Turtles
7.8 'Geometric Figures as Graphical Obiects
177 The Turtle as a Procedure
.18 Towers of Hanoi
7.2 Graphical Solution to the Towers of Hanoi Problem

SEEEEERER

Wiz thioter deseribes the CATCH snd THROW control mechanism of
A580.

40, B8w it js dsed in error handling, and how it can be used in the
2645568 of AtKer computationa! environments. Algorithms for a printer,
* «&¥finer, a parser, and a zim-lifier are zivan for a rational arithmetic

cutuiator. '
A% Introduction o0
23 "The fraceful Return of EXPLORE.GRAPH R
8.3 [Thihg Difestly to the Ton 9.4
7.4 Catehifig Control on the Wav to the Top o
85 Thgds Toplevel o=
R& The Ideo Caleulator i
LT atigial-Numbér CHletlator 1)
&8 ZATAUN: The Rational-Number Expression Simplifier @1
94 e Renresentdtionl of Rational Number Expressions %95
%40 HATREAD: THe Rational-Number Caleulator Reader 99
911 The Skanher]
8.12. The Parser 7
4144 Porenthesized Rational Expressions i |

o e

