\  SOCIETA ITALIANA DI FISICA

~ Proceedings of the
International School of Physics
“Enrico Fermi,” varenna, Italy

course 16 DIRECTOR: N. Rashevsky

PHYSICOMATHEMATICAL
ASPECTS OF BIOLOGY

ACADEMIC PRESS New York and London



Introduction to the Course.

N. RASHEVSKY
Direttore del Corso

This year marks a significant departure from the usual programs of the
International Summer School of the Italian Physical Society. This time the
program includes a field which lies on the border-line of physics and biology.
This is a particularly important innovation because frequently the most im-
portant milestones in the development of Science have been characterized by
the discovery of close relations between what appeared at first as unrelated
fields. In pure physics we may mention as examples the establishment by
Maxwell of the close relation between electromagnetism and light, which
made the latter a part of the former; or the discovery of such phenomena
as the Zeeman effect which introduced the new branch of physies—magneto-
optics.

The existence of physical aspects of biology has been apparent for a very
long time. The very existence of biological phenomena can be perceived by
us only through their physical manifestations. The locomotion of organisms,
the circulation of blood, the movement of an organism under the influence
of light, sound, or heat, are basically physical phenomena. Attempts at ex-
plaining these and similar phenomena in terms of known physical laws are
almost as old as biology itself. It must be remembered, however, that com-
pared to physics, biology is still a very young science. Unfortunately either
due to the complexity of some biological phenomena or due to insufficient
knowledge of physics by some oi the older biologists, explanation of some
biological phenomena in terms of physics was not found in spite of assiduous
efforts. This has led to a school of thought amongst the biologists that life
is essentially a non-physical, or extra-physical phenomenon, and is not re-
ducible to physics. However, with the development of physical techni-
ques in biology as well as with the increased training of biologists in physics,
the number of such « pessimists » has appreciably decreased. Moreover many

1 - Rendiconti 8.I.F. - XVI.
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investigators feel, that it is possible to study fruitfully the physical mecha-
nisms of separate biological phenomena without touching upon the dangerous
question of whether the ultimate basic processes of life can be reduced to
physies.

Of course everybody will agree with me that we eannot postulate a pm’ori
that all biological phenomena can be explained in terms of the contemporary
(1960) physics. Classical physics, in particular classical electrodynamics, did
give an excellent quantitative explanation of a very vast array of physical
facts. Yet it failed in explaining such phenomena as the Michelson experiment
or as the Trouton-Noble experiment, and had to be generalized into the pre-
sent relativistic form. Similarly a number of spectroscopic phenomena proved
refractory to an explanation in terms of classical physics and quantum mecha-
nics had to be introduced. But does this make the above mentioned pheno-
mens unphysical or extraphysical? Certainly not. It is perfectly possible
that in order to explain all the known biological phenomena as well as those
still to be discovered, we shall have to generalize and extend contemporary
physics, in particular quantum mechanics. And if we have to do so, this will
not make the biological phenomena in any way extraphysical. However, until
the necessity for such a generalization of physics becomes quite evident, there
is no use to worry about it. On this interesting point I shall touch in my
last lecture.

As we said, biology is still a relatively young science. Much younger is
the borderline field of biophysics. Still younger is a branch called mathematical
biophysics, or mathematical biology, which stands in the same relation to
experimental biophysics or biology as mathematical physics stands to exper-
imental physics. As you possibly know, I happen to be a representative of
this youngest of all branches.

When I received the gracious invitation from the Italian Physical Society
to organize a course in biophysics, I was faced with more than a dilemma:
either T could choose as a subject of the course some special branch of exper-
imental biophysics and invite leading scientists in this field to discuss it. Or
Y could devote the whole course to some branch of mathematical biophysics
which is much closer to my heart and which I feel much mere gualified to
handle. Or, finally, I could choose to present a general view of experimental
and mathematical biophysics, properly blended, as any mathematical and
experimental science should be. I chose the latter course. I felt that inas-
much as this is the first International Course in this borderline field, it is pre-
ferable to give our students and listeners a general survey of the field, rather
than a detailed cross-section of a specialized branch. I am also deeply con-
vinced that the successful development of any science is contingent upon a
harmonious co-operation between experiment and theory.

On our distinguished panel of lecturers we have both theoreticians, like
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Professor LaxpamL, or Professor BARTHOLOMAY, as Well as experimental
scientists, like Professor BOERI, Professor PoLissaR and Professor DEFARES,
and Doctors Boumax and WIsE. But the experimentalists have also
been engaged in some important theoretical work, while at least some of the
theoreticians have been very closely connected in their work with experimental
problems.

Although the science of biophysics, both experimental or theoretical, is
very young, yet it already has developed to a very large extent. To cover the
whole field in the short period of three weeks is impossible. The general course
in mathematical biology given at the University of Chicago, takes nine months.
Therefore we had to limit ourseves to selected topics. Professor Bokri will
discuss enzyme reactions which offer many interesting physical aspects. He
will conclude with the discussion of the challenging problem of the DNA mole-
cule, which thrills equally biologists and physicists. Professor BARTHO-
LOMAY will discuss reaction rates, a problem closely connected with Professor
BoerTUs. Dr. Bouman will discuss the physics of sensory phenomena, while
Professor DEFARES, Dr. WIsE, and Professor LANDAHL will discuss some physico-
mathematical aspects of the functions of the respiratory tract. Dr. WIsE will
also devote some lectures to problem of radiation hazards. Professor POLISSAR
will discuss his work on some physico-mathematical aspects of cardiac func-
tions. Professor LANDAHL will also discuss some theoretical aspects of sen-
sory phenomena, as well as the phenomena of diffusion, which are so vital in
biology, and the general theory of the central nervous system. A number of
other important phenomena, such as for example circulation, the function of
the digestive tract, ete., will have to be left out for lack of time. Perhaps
future courses could be devoted to them.

Ingofar as their theoretical aspects are concerned all the above mentioned
discugsions will deal basically with what may be called physico-mathematical
models of different biological phenomena. Mathematical biology should, how-
ever, attempt more than that. Like mathematical physics it ghould at-
tempt to establish general mathematical principles. Such principles per se
do not explain any given complex phenomenon, just as Newton’s principles
of motion do not explain alone let us say the behavior of an ideal gas. But
in conjunction with specific assumptions or models of given phenomena, such
general principle should be applicable to any case. In my four lectures I shall
present a still very tentative formulation of two such principles.

At this time it is appropriate to record with feelings of deepest sorrow the
untimely death of Professor H. DE VRIES, who Was one of the first to accept
my invitation to this course. I also regret to inform you that Professor THORSEN
TRORELL, who expressed a great interest in the course and hoped to be
able to join the panel of lecturers, was prevented from doing so by other as-
signments.
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Nel concludere questa breve introduzione, sono certo di esprimere i senti-
menti di tutti noi porgendo i sensi della nostra gratitudine all’ Amministrazione
della Villa Monastero per la sua cordialissima ospitalitd. In particolare, vorrei
ringraziare la Societd Italiana di Figsica, il suo Presidente, Professor POLVANI,
il suo Vice-Presidente, Professor CALDIROLA, ed il suo Segretario Professor
GERMANA, per aver reso possibile questo Corso di lezioni ed avere cosi aiutato
il progresso di una scienza nuova e importante, una scienza che congiunge
la Figica con la Biologia e da entrambe deriva i suoi fondamenti. Questo nuovo
ramo dello scibile — ne sono fermamente convinto — ¢ destinato a fornire
nel futuro un importante contributo per il benessere del genere umano.



Physico-Mathematical Foundations of Reaction Rate Theory.

A. F. BARTHOLOMAY

Harvard Medical School - Boston, Mass.

1. - Introduction.

When chemical substances react, either alone or in co-operation with other
« reactants » to produce new ¢« product » compounds, two important aspects of
the reaction are 1) its detailed mechanism and 2) the rates of the various pro-
cesges involved. The elucidation of both of these factors comprises the branch
of chemistry called « chemical kinetics ».

A whole theory of reaction rates has evolved, particularly during the first
balf of the present century. It is the purpose of these lectures to present the
foundations of this theory, with particular emphasis on the physical principles
involved and on the related mathematical models constructed from these
principles.

The importance to the chemist of reaction rate theory may in fact be said
to lie in these mathematical models which provide a mathematical frame-
work with reference to which proposed mechanisms may be analyzed and
checked. From a broader scientific point of view this subject has also served
a8 a prototype for the construction of kinetic theories in various branches of
biology and points the way to a generalized kinetics theory or theory of ma-
terial transformations [1-3]. »

It will be seen that advances in physics immediately prior to and during
this fifty year period of development of rate theory have been responsible
for the passage of rate theory through a succession of various distinct stages,
each stage consisting of a refinement and extension of the former one. In
particular, direct applications of such physical theories as molecular gas kine-
ties, Maxwell-Boltzmann statistics, Brownian motion, and Maxwellian veloc-
ity distributions have been used extensively in the course of this development.
The influence of physics may be seen most explicitly in the most recent « col-
lision » and « transition-state » theories. It appears completely enmeshed with
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chemieal theory in the most recent critical examinations of the fundamental
bases of these theories which will be found in the chemical literature during
the past ten years.

Mathematical models appearing in the theory have the form, usually, of
ordinary differential equations or systems of such equations joining the rate
of change of the concentration of one chemical species to the concentrations of
the other reactants and products present in the reaction mixture. Such models
are suggestive of the Lagrangian equations of motion in classical physical
mechanics. Despite its discrete nature, the «concentration variable» (in the
final analysis the unit, is the number of molecules per cubic centimeter, say)
is treated as an ordinary differentiable function of time. - Thus, as in the
mechanical analogues, the deterministic requirement made is to the effect
that, given the initial concentrations and parameters (such as temperature,
pressure, pH), the integration of such equations leads to analytic expressions
for the concentrations of all the chemical species involved which allow one
to predict precisely their magnitudes at any subsequent instant of time.

This pattern remains even to the present day, despite the evidence of ran-
dom fluctuation in the concentration-time data produced in the course of a
given reaction run and the quantum and statistical mechanical assumptions
of a probabilistic kind particularly in the most modern form of the theory.
While such considerations point to stochastic process representations which
are being advocated by a few investigators [4-6], the adoption of such repre-
sentations as general procedure would mean a real mathematical departure
from even the most current theory. It is a remarkable fact that the transition
from one theory to the next over the entire 50 year period from 1900 to 1950,
as we shall see, has always amounted to a further decomposition of the «rate
constant » into factors which result from the new probabilistic and physical
considerations. Thus, the mathematical representation undergoes little change
in form in passing from one theory to the next, say, the predicted values of
rate constants reflecting almost entirely the new ideas which have been added.

A shift to stochastic models would bring about changes even in the related
statistical analysis of kinetic data and provide a rationale, possibly, for sep-
arating some of the factors responsible for fluctuation of data about pro-
jected smooth time courses. Aside from assigning as the cause of such fluc-
tuation, simply random errors and uncontrollable factors, the current deter
ministic theory cannot predict the occurrence of such fluctuation about the
expected smooth time course as a function of mechanism. On the other hand,
the stochastic point-of-view emphasizes that the occurrence oi random irregu-
larities in data is at least partly an inherent characteristic of the mechanism
of reaction and provides a mathematical basis for analyzing such fluctuations.
According to the stochastic theory the ultimate transformation of a given
molecule is a relatively « rare event » when considered as the culmination of a
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long sequence of random «ineffective » collisions with other reactant mole-
cules.

The tremendous speed of most reactions, the great number of molecules
involved, upwards of 1028, usually, the relative insensitivity to individual events
of currently employed kinetic apparatus, combined with predictable quantum-
mechanical limits of resolution, and the mathematical complexities of the young
stochastic theory, all point to the greater practicability of pursuing a deter-
ministic approach. On the other hand, a stochastic theory based on discrete
events appears to be a more fundamental and ultimate objective, if certain of
the practical disadvantages can be overcome, particularly in view of the iden-
tity of the stochastic « mean values » with the deferministie time courses (*).
Certuinly this way of thinking would pave the way for the introduction of
Monte (‘arlo methods (*), and, in conjunction with high-speed computers, could
lead to a useful new kind of « paper chemistry ».

Because of the current lack of a complete stochastic rate theory, these
lectures will emphasize the classical deterministic rate theory development.
Thus, in keeping with the main line of development up to the present time,
the function of the mathematical reaction rate model will be thought of as
the prediction of the concentration variable precisely at a given time (*).

2. - Early origins.

’ The beginnings of a whole theory of chemical reaction rates may be traced
to the much older and persistent doctrine of « chemical affinity », originally
introduced as a qualitative notion by ALBERTUS MAGNUS seven centuries ago.
Much later BERGMANN [7] postulated that there was a «force », called « affin-
ity » operating between certain interactive chemical substances, which is an
invariant under identical conditions of reaction and which is independent of
the masses of these substances. The universal force of gravity was held re-
sponsible for this force. Variations in affinity would therefore be observed by
changing the form and positions of the small particles of the reacting sub-
stances.

Many of his predictions and speculations based on this hypothesis were
attacked and shown to be erroneous. A leading opponent in these matters
was BERTHOLLET [8] who was responsible for introducing the « concentration »
(i.e., the amount of chemical reactant per unit volume of reaction mixture)

(*) See reference [6].
(") As opposed to obtaining the probability distributions of such concentrations
at any time, in the stochastic sense.
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a8 an additional factor in control of the course of a chemical reaction. In
1803 he concluded [8] « the chemical affinity of a substance depends on the
force of its affinity, and on the mass which is present in a given volume ».
His conclusion was in turn rejected ¢n fofo by his contemporaries because he
had incorrectly deduced that, given the same reactant chemical species, the
‘final products were not always predictable and would be, in fact, a function
of the amounts of reactants present. However, the relationship of affinity to
concentration was restudied in subsequent years. The work of RosE [9] about
forty years later, on the decomposition of alkaline-earth sulfides by water and
on the reversible action between a soluble carbonate and insoluble sulfate once
more centered attention on the concentration factor.

In the meanwhile WENZEL [10] had begun identifying affinity with the
rate of reaction, pointing out, for example that the « rate of solution » of cer-
tain salts was proportional to the concentration of acid. WILEELMY [11] is
generally credited (*) with having made the first kinetic measurements. In
1850 he published the results of his measurements of the rate of sucrose inver-
sion, calling attention to the influence of concentration on rates. A few years
later BERTHELOT and ST. GiLLes [13] published similar data on the rate of
combination of acid and alcohol in the maintenance of an equilibrium between
ethanol, acetic acid, ethyl acetate and water. They observed that the rate
of the forward reaction was directly proportional to the acid and alcohol con-
centrations. At about this time A. N. WiLLIAMSON [14] made studies of the
esterification of alcohol by concentrated sulfuric acid, pointing out that though
the reaction appeared to become stationary, this was because of the simul-
taneity of forward and reverse reactions and that equilibirum was really a
dynamic condition.

In 1867 C. M. GULDBERG and P. WAAGE [15] formulated the ecelebrated
Law of Mass Action: the rate of chemical reaction is proportional to the active
masses of the reacting substances, the molecular concentrations of the sub-
stances in solution or in the gas phase being the usual measure of active mass.
The constant of proportionality was first referred to by them as the « affinity
constant » and later [16] changed to « coefficient of velocity. » The mathematical
interpretation and applications of this law to various mechanisms of reaction
constituted the very beginning of a theory of the rates of chemical reactions
and rate processes in general. The mathematical model which it generated is
discussed in the next section and referred to as the «classical deterministic
model. »

(") See LarpLER [12].
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3. ~ The classical deterministic model.

Before discussing the mathematical models for various basic mechanismg
that arise by application of the Law of Mass Action, if may be of interest to
draw an analogy between this law and the physical law of attraction between
two masses. While this represents a retrospective view it seems likely, in
view of the applications made subsequently, that this physical analogy may
have been a working hypothesis.

For the purpose of this analogy, identifying reaction rate with a force F
(of affinity, for example) the Law of Mass Action applied to two reactant species,
say A; and A,, which combine in equal proportions to form new products,
can be represented by the equation

m,; m,

(1) F=F SRR

Here m, and m, are the amounts of substances A, and A, present and V is the
total constant volume. Referring back to Bergmann’s affinity hypothesis in
which # is regarded as an effect of the force of gravity; and identifying m,
and m, with the masses of two particles located a «distance V » apart; and
the rate constant k, with a «universal constant » %, the analogy with the phys-
ical law of mutual attraction between two particles is obvious. If the analogy
is valid, then, we would expect rates in complicated mechanisms to be com-
bined in a fashion similar to the combination of vectors in a mechanical
system. This, indeed, turns out to be the ecase (v.:.).

The reduction of equation (1) to the more usual form is accomplished by
the following reasoning. Since m, and m, are changing over the entire course
of the reaction mixture, m, and m, are really functions of time; and because
of the great numbers of molecules being transformed over small periods of
time it has become customary to regard m, and m, as continuous, in fact, dif-
ferentiable functions of time. Accordingly, the rate of change is expressed
as the instantaneous rate, or the derivative and eq. (1) is therefore rewrit-
ten as

1 dm, My m,
@) va o Py v

the negative sign before the positive constant indicating that as the reaction
proceeds, species A; decreases at the rate shown. (In this case dm,/dt may be
replaced by dm,/dt to give the rate of change of species A,).

One further refinement of notation is necessary to obtain this rate expres-
sion in the customary form. Sinee that notation relates the rate equation to
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the « stoichiometric equation » of the reaction, it is necessary first to discuss
the dual role of such equations in chemical kinetics. Stoichiometric equations
are algebraic-like expressions (*) for balancing the atomic composition of re-
actants and final products; or looked at, from another point of view, the weights
of the substances involved. Choosing a simple example,

(3) 2H, - 0, = 2H,0

is @ stoichiometric equation expressing the condition that 2 weights of hydro-
gen gas must combine with 1 of oxygen to obtain 2 weights of the product,
water; or that the total of 4 hydrogen atoms and 2 of oxygen occurring in
each hydrogen-oxygen combination must be accounted for fully in the liberated
products—via 2 molecules of water. If this «overall » stoichiometric expres-
sion were obtained by direct transition (say, irreversibly) from the reactants
to the products then it would also represent the « mechanism » (**) of reaction.
To indicate mechanism, often, an arrow is used in place of the « equality »
sign, with the corresponding rate constant written over the arrow.

(4) A a0, Ay S b B+ b,B . 4 b, B,

]s an example of a more general stoichiometric expression, where a, mole-
cules of chemical reactant species A,, (m==1,2,..., M) interact with a; mo-
lecules of 4; (j#m, j=1,2,..., M) to produce the products on the right in
the proportions shown by the b-coefficients. The bracketed chemical symbols,
[An] (m=1,2,..,, M) and [B,] (n=1,2,..., N) represent the « concentrations
of » the corresponding chemical species. Thus, e.g. in the simple bimolecular
reaction discussed above, the implied mechanism is represented by

(5) A+AS5 B,

say, and corresponding to eq. (2) the rate expression, or « mathematical rate
model » (v.4.) becomes

[QTAT _ _ pragga
(6) { dt [ 1][ 2] b
[ initial conditions: [A;]= A4,,, [A,] = 4,4, [B]=0.

The term « bimolecular » used in connection with (6) refers to the necessity
for the successtul co-operation of 2 molecules of reactant (in this case, of dif-

(‘) See BARTHOLOMAY [176] for a discussion of the very special mathematical context
of such expressions.
(") This point will be discussed at greater length below.
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ferent kinds) for a single chemical transformation. « Equation » (3) is an ex-
ample of a termolecular mechanism, requiring a triplet of 2 reactant mole-
cules of one kind and one of another kind for reaction. The simplest «ele-
mentary » reaction is the «unimolecular decomposition » A — B. The «or-
der of molecularity » in general refers to the total number of reactant mole-

cules, either of the same or of different kinds, for reaction to occur. Expres-
b4

sion (4) has for its molecular order, the integer > a,,.
m=1

It is assumed in this discussion that the mechanisms are « complete » or
« elementary » in the sense that there are no intervening steps separating re-
actants from products as in the stoichiometric expression. Rate theory makes
contact with experimental considerations at precisely such a point: if the
mechanism is complete, then the concentration-time data should fit the form
of the expression predicted by the mathematical model corresponding to that
mechanism. An indication that this is not so would come from the fact that
the «kinetic order » of the data does not agree with the molecular order. Kinetic
order is an empirical concept, which should not be confused with «mole-
cular order». It is defined in cases where the rate estimated from data

M
by regression or curve-fitting appears to be of the type (*) J] IA,]%, where
=1 oM

«,, is not necessarily an integer, in which case the kinetic order is S a,,.
m =]
Clearly if a step of a reaction (or the complete reaction) is of molecular
M
order Ea,,,, it will generate rate data which have for their kinetic order the
me=1

same number, partitioned in the same way. Where there is a disparity between
the two numbers, then the mechanism proposed does not account for the
kinetic expression obtained and a different mechanism must be hypothesized.
Good examples of this are furnished by the following reactions. Hydrogen iodide
is known to be formed in a bimolecular reaction between hydrogen and iodine:

(7) H,+ 1, > 2HI.

Tt would therelore seem reasonable to expect that the formation of hydrogen
bromide follows a similar elementary mechanism:

(8) H, - Br, - 2HBr .

However the kinetic data obtained have been shown not to be of the
second order: they do not agree with the second order molecularity property

(*) See eq. (23) below.
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P

of the proposed bimolecular reaction. The finally accepted mechanism for
this reaction has been shown to consist of a sequence of several steps, the
first of which is «reversible » as indicated by the double arrow:

Br, = 2Br
Br+H, —HBr+H (slow)
H -+ Br, — HBr -+ Br (fast)
H +HBr - H, - Br (fast)

9)

And in the case of the formation of water from its component gases, equa-
tion (3) is correct for the overall stoichiometry, but does not actually elucidate
the whole mechanism. In fact, the whole mechanism of this deceivingly simple
reaction is so complicated that it has not as yet been completely worked out.

Throughout the remainder of these lectures we shall be discussing only
basic, elementary reaction types, unless otherwise indicated, 4.e., mechanisms
or gteps of mechanisms which are complete in the sense that the molecular
and kinetic order are assumed to agree. There is no loss of generality in this,
for in non-elementary complex reactions, the mathematical models will be
synthesized from those corresponding to the individual steps in the whole
mechanism formally (in much the same way that the resultant forces on me-
chanical systems are calculated by composition of individual, independent
component forces),

1) The unimolecular decomposition:

k.

(10) A= B.

The corresponding differential equation with initial condition in this case is

d[A]
S kA
) = [A],

[A] = 4, initially .
Integration yields directly
(12) [A] = A, exp [— Kt]
expressing the concentration of reactant A to be expected at time ¢ as an
exponential function of time. Thus, to test whether a specific reaction, sus-

pected of being first order molecularly, is unimolecular in fact, one would
expect the points (¢,[A]) to exhibit «first order kinetics »; i.e., to define a
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negative exponential curve. The usual way of testing this hypothesis graphi-
cally and of estimating the rate constant as a linear regression coefficient (or
slope) is to transform (12) into the form

(13) In(*)[A]=In4,— &t
and aceordingly to plot the natural logarithms of observed concentrations as

the ordinate against time f as abscissa (**).

2) The M-molecular reaction mechanism with unit coefficients:
A+ A+ +A,5B.

The same differential expression may be written down for each of the
reactunts (or product B, with sign changed):

ala,] _
“a =k I,

(14
(14) initially, [A.] = Ano,
[(B] =0.

This of course follows directly from the Law of Mass Action which states
that the rate is directly proportional to the concentration of reactive species.
If, ¢.g.,

(15) A< Ao (m>1),

then, since

(16) Ap—[M] = Ay —[Ay] = ... = Ay —[A

wls

[Az,] = [A-l] + (dy — 4,) = [A,]) -+ Cay
[As] = [A )4 (Ag — 4y) = [A1] + ¢,
a7 T

3

(AM] = [A]+ (AMU - Am) = [AI] -+ Cu

("} Natural logarithms, base e understood, will be used throughout.
(") For a discussion of first order rate constants and a new rational and for their
caleulations see BARTHOLOMAY | 17a].
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With these substitutions into (14) the resulting differential equations in
[A,] has the solution:

A \s (At e\ (At ou\']
(18) 1n[(A~m) <—£a ) ( e ) J_ Kt

in which d,, d,, ..., d, are determined by the partial fraction expansion of

(A7 U ([A4]+ (/’m)—l .

Tn the bimolecular case (M = 2) this leads to the expression for [A;] as

a function of time:
App(Ayp — Ayy)

19 A = e el
(19) (A Ay — Ay exp [(Azo — Ay kt]’
which is monotonically decreasing, reversed sigmoid curve going from 4,, at
t=0 to 0 as 1 —oco. From the relation [A,] = (A — A1)+ [A:] one obtains
the expression

(20) [A,] — — Aggr(A?.o — Ay) exp [(Azo;— Am)ﬁ] _

e e S — _ "777{1’?‘0(‘420__ A410)
A — A” exp [(Ago — As0) t] Ay — Ao exp [(A10 "“Aen) kt] ’

which shows [A,] going from A,, at t =0, to (A,— A1) as ¢t — oo.
The [B] function may be obtained separately by integration of the differ-
ential equation

d[B]

(21) o = HATTAL.
Combining the condition
{(22) [Al] + [Ae] 4 [B] = 41y + Ay

with the additional constraint 4,,—[A;]= A, —[A,], yields
(23) A =4,—3B] or [A]=A4,—3}B].
The substitution into (21) gives

d[B] &
(24) ”’dt o= 5 (2A10 - [B]) (2A20 - [B]) ’
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which leads to the integrals

[B1 [B] (.t
1 Todx 1 do k
25 - RO U et ——Cial.
(25) 9(Aye — Aw)./ Ay —a 2(A10_A20)f2A20 —z 2
o [} 0

Now since A;,<< A,,, it can be assumed that [B]<C 24,, and certainly [B]<C
< 24,4, so that singularities are avoided in the integration, giving simply

. (8] 1 | B L
26 — - 24,,— —_ e 24,, — = —
(26) Q(Azo — Ayo) In (2 “) 0 A — Ayo) n (24 ?) 0 2 b

1—exp [(4y0 — Aso) Kt]

97 Bl = 2A4,,4,0 +— - )
(27) [B] i 4 AL, exp [(A,o — Ayg) kt]

Alternatively, (27) may be derived algebraically from the expression for
[A1] or [A,] by noting that (22) may be solved for [B] to give

(28) (B] = (Am—‘ [Afj) + (A — [Az]) 5
and since
A, — [A] = Ay — [Azl )

(29) [B] = 2 (4, —[A,]) -
Substituting from (19) into (29),

VAio(Alo - Azo)

30 Bl=2{4, . et -
0 LB] { Ay — Ay €Xp [(AzomAm)kt]J ’

which reduces to (27).

The analytic expressions for [A,], [A,] and [B] all involve logistic shaped
curves or components to which the various special methods for estimating rate
constants of logistic curves may be applied (*). It is interesting to note the
universality of the logistic curve which is at the heart of biological growth
theory. Such curves also arise in connection with autocatalytic processes in
chemistry. .

While we shall not go into details in other examples, the mathematical
details of this case have been worked out completely in order to illustrate
the combination of algebra with the integration process which is so charac-
teristic of the mathematical mechanics of this subject. Thus, the complete
deterministic mathematical model corresponding to a given chemieal reaction

(") See KEMPTHORNE ef al. [18], chap. 8 by K. R. NaIr.
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mechanism consists of a differential equation (or set of equations) together
with initial conditions and algebraic concentration interdependencies (« material
balance conditions »). Of course, to obtain such a rate theory boundary value
problem it is necegsary to assume that the reaction system is a homogeneous
closed system (in the usnal physical sense). These lectures are confined entirely
to this simplest case. Open systems result in differential equations with addi-
tional diffusion terms and constants due to the material exchange of the
reaction system with its environment.

M
3) The general Y a,, molecular case with coefficients greater than unity:
m=1
{31) A +a A+ Fa, A, B,

The complete mathematical model in this case will be

dfA,, L]

»%ft=—km[HAd%, m=1,2, .., M),
m=1

[Am] = Amo, BO =0

A,, = min {4,} | initial conditions

(32)

M M
DAL+ [Bl=3 A4, material balance
m=1 m=1 conditions

Amo —[An] = %73 (Az'o_‘ [A,]) J[ (m 7= j)
Noting that %, /k; = aw/a; (m,j=1,2,..., M), a unique rate constant k may
be defined by the relation: %k, = a,k. Another observation to be made is that
the initial conditions given are entirely arbitrary; in a particular reaction
system, they will be arrived at by experimental eonsiderations.

All of the mechanisms so far discussed have been of the «irreversible type »
The simplest « reversible » mechanism would be:

4) The reversible unimolecular reaction mechanism:
(33) A2 B.

The mathematical model in this case is obtained by considering, e.g., that
acting on [A] are two reaction velocity foreces

a4 rencti
{34) J,,,,] = —k,[A] (forw_a,rd reaction
at |, velocity component),
{38) a[a] = k,[B] (reve?se reaction
de |, velocity component) ,



