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PREFACE

The International Symposium on "Electromagnetomechanical Interactions in Deform-
able Solids and Structures" was held in the Sanjo Hall of the University of
Tokyo in Tokyo, Japan, between 12-17 October, 1986, under the sponsorship of the
International Union of Theoretical and Applied Mechanics and with the support of
the National Committee for Theoretical and Applied Mechanics of the Science
Council of Japan. The scientific committee of the symposium consisted of eight
members. The local organizing committee and the local executive committee were
formed to execute tasks efficiently.

The first 1UTAM-IUPAP symposium relating to electromagnetomechanical behaviour
of solid continua was held in Paris, France, in July 1983 and was composed of a
new group of scientists and engineers. The 1986 symposium was proposed in res-
ponse to the desire that a similar kind of IUTAM symposium should be held in
Japan. It was authorized by IUTAM in 1984,

The basic concept of this symposium was placed on the stimulation and exchange
of creative ideas and the promotion of advanced investigations into electromag-
netomechanical interaction phenomena. The importance of research in this field
has been well recognized due to the rapid developments which have, recently,
been achieved. These developments are particularly evident in both nuclear
fusion reactor technology and electroacoustic device technology in the light of
electromagnetoelasticity.

The scope of the symposium was extended to:

(1) Magnetomechanics of structural components;
(2) Magnetomechanics of superconducting magnets;
(3) Wave propagation in magnetic fields;

(4) Acoustoelectricity and piezoelectricity;

(5) The application of eddy current techniques in flaw detection;

(6) New numerical schemes for eddy currents and magnetic field analysis.

Six distinguished scholars were invited to deliver general lectures which sur-
veyed recent developments and explored new ideas and methods for dealing with
problems in this recently developing field. A wide range of theoretical, experi-
mental, and numerical research was reported and discussed on the above-mentioned
subjects. A total of seventy-two papers were presented at the symposium. Forty-
one participants from Japan attended the presentations together with more than
fifty participants from overseas. All the presentations were made orally. The
authors prepared their papers in "camera-ready" form so that they could be
included in these proceedings.

Financial support was provided by the International Union of Theoretical and
Applied Mechanics and the Japanese Society for the Promotion of Science. Dona-
tions from the Japanese World Exposition Commemorative Fund, the Mitsubishi
Foundation, and the Kashima Foundation are cordially acknowledged.

A1l work concerned with the preparatory management of the symposium, related
events, and the editorial duties involved in preparing these proceedings were
conducted by the staff of Professor Miya's laboratory under the auspices of the
local executive committee. We greatly appreciate their devoted efforts and con-
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tributions to this symposium. We believe that its success might not have been
achieved without their cooperation. We also believe that this symposium has, no
doubt, motivated researchers in these areas of study which will lead to more
advanced and fruitful results in the field of electromagnetomechanics.

October, 1986 Yoshiyuki YAMAMOTO
Kenzo MIYA
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MAGNETOELASTIC BUCKLING OF FERROMAGNETIC
AND SUPERCONDUCI’ ING STRUCTURES

AAFR m de Ven
Eindhoven University of Technology
Department of Mathematics and Computing Science
Eindhoven, The Netherlands

A general method for the determination of the buckling load for a slender body under clec-
tromagnetic influence is presented. The body may be either supercondikting or soft ferromag-
netic. Explicit results of this method are given for two examples, knowing the stability of a
superconducting ring in its own field, and the buckling of a set of two ferromagnetic rods in an
external magnetic Geld.

1. INTRODUCTION

One of the topics in electromagnetoclastic interaction theory is the study of the stability of a slender body
loaded by forces of electromagnetic origin (see ¢.g. [1]). In general an electromagnetoelastic stability problem is
governed by: the Maxwell equations, the equations of motion (or equilibrium equations), constitutive equations
for the stresses and one or more electromagnetic field variables and, finally, the electromagnetic and mechanical
boundary conditions. In these relations interaction terms occur; for instance the body force in the equation of
motion is of electromagnetic origin. Moreover, and this is an even more essential effect, these relations all refer

10 the, a priori unknown, deformed state of the body (¢.g. the boundary conditions must be applied on the

deformed surface of the body). As a consequence, this set of relations is essentially nonglinear.

In practice, electromagnetoclastic stability problems mainly occur in

a)  superconductors,

b) ferromagnetic devices (with x=pt, > 1).

In the Maxwell-Minkowski-model (cf. [2]) which is used here for soft ferromagnetic media with large permeability
(i.e. for ;' =0) the electromagnetic force consists only of a surface tension T (the body force is zero), and
the same holds true for a superconductor. One has

6) T® =l (K, K)n ., b) T =1 y(M,n)n . an

(M : magnetization; a: outward normal; K : surface current).
Hence, from a mechanical point of view, a) and b) are identical. The differences, however, lic in the magnetic
boundary conditions, which read (* outside, ~ inside the body)

a) (B~=0) b) (1'=0)
(B*,p)=0 (B*m)=(B",n) , T
(H*xn)=-K (H*xm)=0 .

In spite of these differences, the stability analysis follows the same lines for both problems,

2. GENERAL DESCRIPTION OF THE PROCEDURE

We shall give bere an outline of the main sieps in the procedure leading to the determination of the buck-
ling load for s slender body under eloctromagnetic influence. Our basic idea is: the final, or buckied, state is con-
sidered as a pertwrbation of some intermediate state, which heve is approximated by the rigid-body state. The
fields in the final state are decomposed into the rigid-body fields and the pertarbations on this intermediate stater
These perturbations are due to the deflections in buckling of the slender body and are assamed to be small. There-

fore, the perturbed sct may be lincarized with respect to the perturbations. Thus, two sets of equations and boun-

dary conditions are obtained
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i) a set for the rigid-body fields;

ii)  a linearized set for the perturbations.

Since this larter set is mm, it always has the trivial- or zero-solution as a solution. It is only for special
values of the electromagnetic load p (i.e. the basic external magnetic field or the total electric current)
that this set has a non-trivial solution. The lowest of these values is called the buckling value.

For slender bodies (such as beams or rods, plates and rings) the displacement in buckling can be characterized by
one or two global displgcement parameters. For instance, the deflection of a siender beam is characterized by the
transverse displacement of its central line, that of a thin plate by the normal displacement of its central plane, and
that of a ring (in-plane) by the displacements in radial and tangential direction of its central line.

Since the perturbed ficlds arise from the deflections in buckling, it is logical to use for the solution of the per-
turbed system a separation of variables in which the perturbed fields are d to be proportional to the dis-
placement parameters meationed above. Let us explain this in somewhat more detail for the case, frequently met
with, that the perturbed magnetic field quantities can be described by a magnetic potential ¢=¢ (x,,x,x3), satis-
fying the 3-dimensional Laplace equation A¢=0. Denoting the displacement parameter by u, we propose the
separation of variables (in a schematic notation)

¢=®u .

Because this separation must be consisted with A ¢=0, two equations for @ and u follow.
Written out for a beam, the separation condition reads explicitely

O(xy,x3,%3) = @(xy,x3) 8 (x3) @D

where x, is the coordinate along the a~is of the beam. In order that this separation is consistent with A ¢ =0, therc
must exist a real parameter A such that

AD(x1,x7) - BO(x;,22)=0 .,  u”"(x3) +2u(xy)=0 . (2.2)
The value of the parameter A follows from the support conditions of the beam.
In a completely analogous way the plate and the ring can be treated, yielding
i) for the plate (x,,x,: coordinates in the plane of the plate)
O(xy,x2,23) = ®(x3)w (x3,x3) , (2.3)
implies
O (x3) - N®(x3)=0 ,  Aw(x;,x)+Mw(x;,x,)=0 ; 24)
i) for the ring (1,M,0 are toroidal coordinates, of which 8 is the pole angle; w () is the radial displacement
of the ring, which is taken inextensible)
#(x1.x2,x3) = ®(U.M)w (8) , @5)
gives
AD(U. M) -m2O(u,n)=0 , w"(8)+miw(8)=0, @2.6)
with m € IN, because w must be periodic in 9.

Anequaﬁmfad\edisphwncmpnmne:auorwcmbeduivedfmnmeequilibriumequaﬁonsortheequn-

tions of motion. For slender bodies these equations can be i ed 10 well-known one- or two-dimensional glo-

bal equations, which are known as beam-, piate- or ring-equations. The load-parameters ocurrring in these equa-

tious are always of electromagnetic origin (here, integrls of T“™)). Note that for an explicit determination of

T, and hence the load-parametes, the magnetic part of the perturbed system must be solved first
Schematically, the whole procedure can now be recapitulated as follows:

~



