N ety
..o.a..-.\... : N d.. ::.2 »sox%

LD TN
.:.:....... AU

.

-Qv..‘
4-.—-.
e TR e ' :
o S

DO

e

"
....._.:.

—.:::-:..

04 WS X
M, SRR
Severeny e
vn.......;. ..;... A
ALY

5_... . ol PR
A0 " X AN
...:...:—

. \J
NN N

N

" . 4
R
CLOLLALOOO0

WO

WAL ..::.:........
" 00 NOOOULD
.:...:—.. OO s
e e
~..........:...... "
1004
000000

.
J
A
o0
. LYY LR
MLLLLLYTYS MOOURCD
OO LAEOO

*
'

seivess

.
oOUULLULLLLEY

A
U ,
dlitenees
ﬂo'e..‘b.!- ’ (LN

Real-time Computer
Control

STUART BENNETT

Department of Control Engineering,
University of Sheffield, UK

PRENTICE HALL
NEW YORK * LONDON « TORONTO + SYDNEY « TOKYO

First published 1988 by

Prentice Hall International (UK) Ltd,
66 Wood Lane End, Hemel Hempstead,
Hertfordshire, HP2 4RG

A division of -
Simon & Schuster International Group

© 1988 Prentice Hall International (UK) Ltd

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the
prior permission, in writing, from the publisher.
For permission within the United States of America

. contact Prentice Hall Inc., Englewood Cliffs, NJ 07632

Printed and bound in Great Britain at
The University Press, Cambridge

Library of Congress Cataloging-in-Publication Data

Bennett, S. (Stuart)
Real-time computer control.

(Prentice-Hall International series in systems and
control engineering)

Bibliography: p.

Includes index.

1. Digital control systems. 2. Real-time data
processsing. 1. Title. ‘II. Series.
TJ223.M53B46 1988 629.8'95 87-29274
ISBN 0-13-762485-9

2345 92919089

ISBN 0-13-7L2485-9
ISBN G-13-7b2501-Y4 PBK

.

Real-time Computer
Control

Prentice Hall International Series
in Systems and Control Engineering

M.J. Grimble, Series Editor

BANKS, S.P., Control Systems Engineering: modelling and simulation, control
theory and microprocessor implementation

‘ BANKS, S.P., Mathematical Theories of Nonlinear Systems
BENNETT, S., Real-time Computer Control: an introduction
CEGRELL, T., Power Systems Control

COOK, P.A., Nonlinear Dynamical Systems

PATTON, R., CLARK, R.N., FRANK, P.M. (editors), Fault Diagnosis in
DPynamic Systems

SODERSTROM, T.,-STOICA, P., System Identification

Preface

Over the past 25 years the application of digital control to industrial processes has
changed from being the exception to the commonplace. The growth in the
applications of computer control has been brought about largely by the rapid
advances in hardware design and the reduction in costs: this is most clearly
demonstrated by the extent to which the microprocessor has become a normal
component of a wide range of electronic systems.

The development of design and production techniques for the software
necessary to operate computer systems has not kept pace with the advances in
hardware. The problems of software design and production are well-known and
there are major research and development programs aimed at remedying the
position. These programs are concerned both with developing techniques for
design and with the provision of software tools to support both design and
production. It is now clearly understood that the creation of software for real-time
systems, i.e. systems which have to respond in real-time to events in the outside
world, is one of the most difficult areas of software design and production.

The difficulty faced by both engineering students and by experienced
engineers is that traditional computing courses for engineers have emphasized the
hardware and programing language aspects of computer systems. The languages
usually taught - FORTRAN and more recently Pascal — do not have any support
for real-time concurrent processing or for direct manipulation of the computer
hardware. Applications used to illustrate the teaching have usually been restricted
to stand-alone scientific programs. Attempts to go beyond this have required
instruction in the use of assembly languages. The majority of books which deal with

.

real-time applications and with digital control assume that the software will bg- - +

written in an assembly language. They concentrate almost entirely on the
techniques for coding algorithms and are therefore concerned with speed of
execution, memory usage, and the effects of word length on accuracy. These are, of
course, important problems in many applications; however, there are applications
for which a different approach, based on the use of high-level languages is
appropriate and this book attempts to address this area.

The book is intended for final year undergraduate students and practising
engineers. It assumes that the reader will have some familiarity with at least one
high-level language and possibly with an assembly language as well. The first part
of the book (Chapters 1, 2 and 3) provides a general overview of the subject
including definitions and classifications of real-time systems, computer control
configurations and hardware requirements.

Xiii

xiv

Preface

Chapter 4 deals with methods of implementing a controller on a digital
computer. The problems are illustrated by considering the implementation of the
traditional three-term (PID) controller. A brief coverage of the implementation of
a controller given in z-transform notation, obtained either by the use of discrete
design methods or through discretization of a continuous controller design, is
given. Knowledge of z-transforms is not required in order to understand the
section. :

Software design techniques for real-time systems are introduced in Chapter 5.
The principles underlying two methods, MASCOT and real-time structured design,
are covered. Empbhasis is given to dividing the software into modules and to the use
of multi-tasking. The traditional approach to implementing multi-tasking — the use
of a real-time operating system - is covered in Chapter 6. The general features of
operating systems are introduced by describing a simple single-user, single-task,
operating system (CP/M 80). The various additional requirements for real-time
multi-tasking are then introduced.

In Chapter 7 the approach to supporting multi-tasking based on the use of a
real-time language with minimum operating system support are considered. The
basic ideas of concurrent programming, use of semaphore, signals and monitors are
described. The general language requirements for real-time programming are
covered in Chapter 8 and a brief comparison of a number of languages is given in
Chapter 9. The examples in the book are given in several languages, but
predominantly in Modula-2.

Many people have assisted in producing this book and I am grateful to all of
them. Particular thanks are due to Steve White, a former colleague; to the many
students who have assisted in developing my understanding both through class
discussion and through the project work which they have carried out, and to the
technical staff of the Department of Control Engineering, University of Sheffield. I
wish also to thank the staff of Prentice Hall, in particular Glen Murray and Andrew
Binnie, for their advice and support.

S.B.

Acknowledgements

The Publishers wish to thank the following for permission to reproduce extracts .
from published material:

Peter Peregrinus Ltd, for Figures 2.1, 2.5, 2.14, 9.29 reproduced from S.
Bennett and D.A. Linkens (1984), Real-time Computer Control and for Figure 2.8,
reproduced from S. Bennett and D.A. Linkens (1982), Computer Control of
Industrial Processes. :

The Institution of Electrical Engineers for Figures 8.4, 8.5, 8.6, 8.7 reproduced
from B.S. Hoyle (1984) ‘Engineering microprocessor software’, Electronics and
Power, 30.

The American Society of Mechanical Engineers for Figure 1.1 redrawn from
G.S. Brown and D.P. Campbell (1950) ‘Instrument engineering: its growth and
promise in process control problems’, Mechanical Engineering, 72, p. 124. ‘

Ellis Horwood for Figure 7.7 reproduced from S.J. Young (1982), Real-time
Languages. :

Van Nostrand Reinhold for Figure 9.24 reproduced from D.A. Mellichamp
(ed.) (1983), Real-time Computing.

XxXv

Contents

Preface . xiii
Acknowledgements XV
1 Introduction to Real-time Systems 1
1.1 Historical Background - 1
1.2 Elements of a Computer Control System 3
1.3 Classification of Real-time Systems 8
1.3.1 Clock-based systems 10
1.3.2 Sensor-based systems 10
1.3.3 Interactive systems : 11
1.4 Real-time Systems — a Definition 11
1.5 Classification of Programs 14

1.6 Summary 16
Exercises 16
References and Bibliography 17

2 Concepts of Computer Control 19
2.1 Introduction : 19
2.2 Sequence Control 21

2.3 Loop Control (Direct Digital Control) 26
2.4 Supervisory Control - 33

2.5 Human or Man-Machine Interface (MMI) 36

‘2.6 The Control Engineer ‘ 37

2.7 Centralized Computer Control ' 38

2.8 Hierarchical Systems : 39
2.9 Distributed Systems 43
2.10 Economics of Computer Control Systems 45
Exercises 46
References and Bibliography 46

3 Computer Hardware Requirements for Real-time Applications 48
3.1 Introduction ' 48

3.2 General Purpose Computer : 48"
3.2.1 Central processing unit ’ 48

3.2.2 Storage 52
3.2.3 Input and output . 53

~ 3.2.4 Bus structure 53

vii
-

viii

33

3.4
3.5

3.6

3.7

3.8

Process-Related Interfaces

3.3.1 Digital signal interfaces

3.3.2 Pulse interfaces

3.3.3 Analog interfaces

3.3.4 Real-time clock

Data Transfer Techniques: Polling
Data Transfer Techniques: Interrupts
3.5.1 Saving and restoring registers
3.5.2 Interrupt input mechanisms
3.5.3 Interrupt response mechanisms
3.5.4 Hardware vectored interrupts
3.5.5 Interrupt response vector

3.5.6 Multilevel interrupts
Comparison of Data Transfer Techniques
3.6.1 Direct memory access
Communications

3.7.1 Asynchronous and synchronous transmission techniques
3.7.2 Local and wide area networks
Standard Interfaces

Exercises

References and Bibliography

4 DDC Control Algorithms and their Implementation

4.1
4.2
4.3
4.4
4.5

4.6
4.7

4.8
4.9

Introduction)

The PID Control Algorithm: the Basic Algorithm
Implementing the Ideal PID Controller :
Timing

Alternative Forms of the PID Algorithm

4.5.1 Bumpless transfer

4.5.2 Saturation

4.5.3 Noise

Conte;rts

54
53
59
61
63
64
67
68
69
71
74
80
84
85
87
87
88
92
94
95
97

99
100
101
103
106
106
109
115

4.5.4 Improved forms of algorithm for integral and derivative calculation 117

Tuning and Choice of Sample Interval

Implementation of Controller Desigfis Based on Plant Models
4.7.1 Direct methods

The PID Controller in z-transform Form

Summary

Exercises

References and Bibliography

5 Design of Real-time Systems

5.1
5.2
5.3

General Approach
Specification Document
Preliminary Design
5.3.1 Hardware design

118
120
120
123
124
125
127 °

129

129
133
135
135

Contents

5.4
5.5
5.6
5.7
5.8

5.9

5.3.2 Software design

Single Program Approach
Foreground/Background System
Muliti-tasking Approach
General Approach to Real-time Software Design
MASCOT

5.8.1 Activity

5.8.2 Communication

5.8.3 Channels

5.8.4 Pools

5.8.5 Synchronization
Example of Preliminary Design

5.10 ‘Detailed Design: Module Subdivision

5.11
5.12
5.13

5.14

Design Review

The MASCOT System
Structured Development for Real-time Systems
5.13.1 Data transformation
5.13.2 Control transformations
5.13.3 Prompts

5.13.4 Summary of the method
5.13.5 Building the model
Summary

Exercises

References and Bibliography

6 Operating Systems

6.1
6.2

6.3

6.4

6.5

6.6

6.7

Introduction

Single-task or Single-job Operating System

6.2.1 CCP direct commands

6.2.2 Basic disk operating system

Simple Foreground/Background Operating System
6.3.1 General foreground/background monitors
Real-time Multi-tasking Operating Systems
Task Management

6.5.1 Task states

6.5.2 Task descriptor

Task Dispatch and Scheduling

6.6.1 Priority levels

6.6.2 Interrupt level

6.6.3 Clock level

6.6.4 Cyclic tasks

6.6.5 Delay tasks

6.6.6 Base level ,
6.6.7 System commands which change task status
6.6.8 Dispatcher: search for work

6.6.9 Deadlock

Memory Management

ix

137
138
140
144
145
150
150
150
151
151
152
154
157
160
162
162
163
165
165
167
167
172
174
174

176

176
179
180

182

189
191
192
195
195
197
201
201
203
204

o]
ra

208
208

" 209

211
214
215

6.8

. 6.9

6.10
6.11

Code Sharing

6.8.1 Serially reusable code

6.8.2 Reentrant code

Input/Output Sub-system (IOSS)

6.9.1 Example of an I0SS

6.9.2 Output to printing devices
6.9.3 Example of input from keyboard
6.9.4 Device queues and priorities
Task Cooperation and Communication
Summary

Exercises

References and Bibliography

7 Concurrent Programming

7.1
7.2
7.3

7.4
7.5
7.6
7.7

Introduction

Concurrent Programming
Mutual Exclusion

7.3.1 Primitives

7.3.2 Condition flags

7.3.3 Semaphores
Producer-consumer Problem
Monitors

Rendezvous

Summary

Exercises

References and Bibliography

8 Real-time Languages

8.1
8.2

83
8.4
85

8.6
8.7

Introduction

User Requirements
8.2.1 Security

8.2.2 Readability
8.2.3 Flexibility

8.2.4 Simplicity

8.2.5 Portability
8.2.6 Efficiency
Language Requirements and Features
Declarations

Types

8.5.1 Sub-range types

. 8.5.2 Derived types

8.5.3 Structured types
8.5.4 Pointers :
Initialization
Constants

Contents

219
220
220
222
226
227
228
230
230
232
233
233

234

234
235
237
239
240
243
249
258
262
268
268
269

270

270
270
2N
272
274
280
280
280
281
283
284
285
286
287
287
288
288

Contents

8.8
8.9
8.10
8.11
8.12
8.13

Control Structures

Scope and Visibility

Modularity

Independent and Separate Compilation
Exception Handling

Low-level and Multi-tasking Facilities
Exercises

References and Bibliography

9 Programming Languages

9.1
9.2
9.3
9.4
9.5
9.6
9.7

9.8
9.9

9.10

9.11

Index

Assembly Languages

Evolution of High-level Languages
BASIC

FORTRAN and Pascal

CORAL 66

RTL/2

Modula-2

9.7.1 Modules

9.7.2 Low-level facilities

9.7.3 Concurrent programming: co-routines
9.7.4 Concurrent programming: processes
9.7.5 Interrupts and device-handling
9.7.6. High-level multi-tasking modules
Ada

Application-oriented Software

9.9.1 Table-driven

9.9.2 Block-structured software

9.9.3 Application languages
CUTLASS

9.10.1 General features of CUTLASS
9.10.2 Data typing and bad data
9.10.3 Language sub-sets

9.10.4 Scope and visibility

9.10.5 Summary

Choice of Programming Language
References and Bibliography

xi

289
291
294
296
298
301
303
303

305

305
307
n
312
315
316
318
320
323
324
326
328

330

337
338
338
341
342
342
345
347
348
348
350
350
355

359

Introductionto Real-time Systems

HISTORICALBACKGROUND

The earliest proposal to use a computer operating in ‘real time’ as part of a control
system was made in a paper by Brown and Campbell [1950]. The paper contains
a diagram (see Figure 1.1) which shows a computer in both the feedback and feed-
forward loops. Brown and Campbell assumed that analog computing elements
were the most likely to be used but they did not rule out the use of digital computing
elements. The first digital computers developed specifically for real-time control
were for airborne operation, and in 1954 a Digitrac digital computer was success-
fully used to provide an automatic flight and weapons control system.

Raw material

Process Product
Plant : -
reaction
-— Means of
Appropriate Computer - quality
L parameters measurement
Reference

Fig. 1.1 Computer used in control of plant {redrawn from Brown and Campbel!
Mechanical Engineering, 72, 1950).

1

Introduction to Real-time Systems

The application of digital computers to industrial control began in the late
1950s. The initiative came, not from the process and manufacturing industries, but
from the computer and electronic systems manufacturers who were looking to
extend their markets and to find outlets for equipment which had failed to be
adopted by the military [Williams 1983]. The first industrial installation of a
computer system occurred in September 1958 when the Louisiana Power and Light
Company installed a Daystrom computer system for plant monitoring at their power
station in Sterling, Louisiana. This was not a control system: the honor of the first
industrial computer control installation went to the Texaco Company who installed
an RW-300 (Ramo-Wooldridge Company) system at their Port Arthur refinery in
Texas, which achieved closed-loop control on March 15, 1959 [Anon 1959].

During 1957-8 the Monsanto Chemical Company in cooperation with the
Ramo-Wooldridge Company,studied the possibility of using computer control and
in October 1958 decided to implement a scheme on the ammonia plant at Luling,
Louisiana. Commissioning of this plant began on January 20, 1960 and closed-loop
control was achieved on April 4, 1960 after an almost complete rewrite of the control
algorithm part of the program and considerable problems with noisc on the
measurement signals. This scheme, like the system installed by the B.F. Goodrich
Company on their acrylanite plant at Calvert City, Kentucky in 1959-60, and some
40 other systems based on the RW-300, were supervisory control systems used for
steady-state optimization calculations to determine the set-points for standard
analog controllers; that is, the computer did not control directly the movement of the
valves or other plant actuators.

The first direct digital control (DDC) computer system was the Ferranti Argus
200 system installed in November 1962 at the ICI ammonia-soda plant at
Fleetwood, Lancashire, the planning for which had begun in 1959 [Burkitt 1965].
It was a large system with provision for 120 control loops and 256 measurements,
of which 98 and 224 respectively were used on the Fleetwood system. In 1961 the
Monsanto Company also began a DDC project for a plant in Texas City and a
hierarchical control scheme for the petrochemical complex at Chocolate Bayou.

The Ferranti Argus represented a change in computer hardware design in that
the control program was held in a ferrite core store rather than on a rotating drum
store as used by the RW-300 computer. The program was held in a programmable
read-only memory; it was loaded by physically inserting pegs into a plug board, each
peg representing one bit in the memory word. Although laborious to set up initially, the
‘system proved to be very reliable in that destruction of the memory contents could only
be brought about by the physical dislodgment of the pegs. In addition, security was
enhanced by using special power supplies and switch-over mechanisms to protect
information held in the main core store. This information was classified as follows:

1. Setpoints Loss most undesirable;
Valve demand Presence after controlled stoppage allows computer to
gain control of plant immediately and without disturbance: bumpless
transfer;

3. Memory calculations Loss is tolerable, soon will be updated and only
slight disturbance to plant; and

Elements of a Computer Control System : 3

1.2

4. Future development calculation Extension to allow for optimization may
require information to be maintained for long periods of time.

In addition to improved reliability the Argus system provided more rapid
memory access than the drum stores of the RW-300 and similiar machines and as
such represented the beginning of the second phase of application of computers to
real-time control.

The computers used in the early 1960s combined magnetic core memories and
drum stores, the drums eventually giving way to hard disk drives. They included the
General Electric 4000 series, IBM 1800, CDC 1700, Foxboro FOX 1 and 1A, the
SDS and Xerox SIGMA series, Ferranti Argus series and Elliot Automation 900
series. The attempt to resolve some of the problems of the early machines led to an
increase in the cost of systems: the increase was such that frequently their use could
be justified only if both DDC and supervisory control were performed by the one
computer. A consequence of this was the generation of further problems particularly
in the development of the software. The programs for the early computers had been
written by specialist programmers using machine code; and this was manageable
because the tasks were clearly defined and the quantity of code relatively small. In
combining DDC and supervisory control, not only had the quantity of code for a
given application increased, but tlie complexity of the programming also increased
in that the two tasks had very different time-scales; and the DDC control programs
had to be able to interrupt the supervisory control programs. The increase in the
size of the programs meant that not all the code could be stored in core memory:
provision had to be made for the swapping of code between the drum memory and
core.

The solution appeared to lie in the development of general purpose operating
systems and high level languages. In the late 1960s real-time operating systems were
developed and various PROCESS FORTRAN compilers made their appearance.
The problems and the costs involved in attempting to do everything in one computer
led users to retreat to smaller systems for which the newly developing minicomputer
(DEC PDP-8 PDP-11, Data General Nova, Honeywell 316, etc.) were to prove
ideally suited. The cost of the minicomputer was small enough to avoid the need to
load a large number of tasks onto one machine; indeed by 1970 it was becoming
possible to consider having two computers on the system, one simply acting as a
stand-by in the event of failure.

The advent of the microprocessor in 1974 led to a further reappraisal of
approach and the development of distributed systems. These developments are
considered in more detail in Chapter 2. '

ELEMENTS OF A COMPUTER CONTROL SYSTEM

- As an example we shall consider a simple plant, a ‘hot-air blower’ as shown in Figure

1.2. A centrifugal fan blows air over a heating element and into a tube, A thermistor
bead is placed at the outlet end of the tube and forms one arm of a bridge circuit. The

"19mo|q Jle-joy e :jueld aiduns v z°L B4

19189 LUl 1Y
O O
191ndwo;
~ uEN _ Tzsi " O pasop

lojeradQ [enuejy Aind uonisod uado
o H oLy g

(A01-0) .
EoEo._:m«uE @

ainjesadwa], ndui

° 19M0d
Y

o[l e
JlqeLres

pyydwe » jun
NNdID 10)5UA
23pug i
[onuod
I0J0
L
¢ - 2qnL * .
1
moy Iy asmYdopnuy JOMLO
[3SIMY00[D)

