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Preface

This book introduces the nature of operational research and some basic
techniques to students in higher and further education and to people work-
ing in business and public administration. Explanation is mainly through
carefully chosen examples and exercises, occasionally simplified, but
otherwise intended to be realistic in context.

Most readers are likely to have the basic knowledge needed to follow the
calculations given in the text and to attempt the exercises; those with no
calculus or statistics should be able to master most of the material; and
those without may find the two books by A. E. Innes mentioned on page ii
helpful.

Examples and exercises have been kept fairly simple. Application of the
principles they use to business and to administration requires more rigor-
ous and formalised methods, because the problems are more complex. For
a complete use of operational research in a large organisation a master
model will be constructed, co-ordinating the work of separate models, in
each one of the specialised techniques described in this book.

Each chapter lays a simple foundation for a wide and important topic,
and each bibliography contains key titles for further study. Readers will
find that deeper penetration into specielised branches often depends upon
more complex mathematical methods.

The authors are glad to acknowledge the great help received in planning
and writing the book. Mr Shaie Selzer, one of the publisher’s editors, was
concerned with the birth of the book, and its early upbringing, and his
successor, Mr Nicholas Brealey, saw it into publication. Mrs Sonia Yuan,
B.A., M.Sc., Senior Lecturer in Statistics at Oxford Polytechnic, discussed
with the authors the general proposals and saw some of the manuscript,
and her advice has proved most valuable. Our three typists served in this
taxing field most competently; they were Mrs Joan Jones and Miss Anne
Westover, both of the Institute of Local Government Studies, Birmingham
University, and Mrs Beryl Perry.

The authors have worked closely together to make the book useful,
accurate and up to date, ideals in a developing quantitative field easier to
set than to achieve; for any shortcomings they take full responsibility.

PALMER

C.F.
A.E.INNES
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1

Introducing Operational Research

Operational research, or operations research (to use the American term),
describes the application of specialised quantitative techniques to solving
problems met in industry, in commerce and in administration. For many
years separate statistical and mathematical methods had been used to guide
decision-making in these fields, but it was the impetus of the Second World
War in Great Britain and America that began to bring together teams of
mathematicians, statisticians, psychologists, physicists and other scientists
to tackle problems demanding over-al' strategies of enquiry and appli-
cation. Calculations of manpower and material needed to land and maintain
combatant forces on hostile territory and of civilian food requirementsina
siege economy were two examples of ‘the fields in which operational
research developed. Peaceful applications have been made in most coun-
tries of the world on lines described in the remaining chapters of this book.

Operational research studies systems, a term readily recognised but not
easy to define. A fleet of lorries regularly delivering goods from a ware-~
house to a firm’s customers constitutes a system. The term could properly
be applied to surgeons working together in a hospital, with the anaesthe-
tists, sisters and nurses working with them, and the equipment they use. In.
business, study of the behaviour of a system usually involves study of
related sub-systems: the production-line of a factory is an identifiable sys-
tem; but a change in its working would involve changes in the supplies of
raw materials, in the employment of workers and perhaps in the storage of
finished products. Essentially, therefore, a system is a group of people
engaged in joint, purposeful activity, together with material means used to
achieving it, within the general context of industry, commerce or adminis-
tration; and such a system is likely to be supported by, or associated with,
other systems called sub-systems. ,

Groups and sub-groups thus described rarely lend themselves to direct
experiment of the kind carried out in laboratories in the natural sciences. A
Birmingham firm, for example, with a new product to export may need to
choose between Liverpool, Bristol and London as its outlet. It cannot set
up three separate dock offices and in the light of experience choose the
most suitable. A government may need to decide whether £100 million is
better spent on electrifying the railway between two major cities or upon
improving the road system between them. Not only are the issues at stake
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very complicated, but for the government there is little scope for crucial
experiment, as the scientist would understand it. Both kind of problem are
suitable for operational research, and insight would be obtained by setting
up rmodels.

Iconic models, i.e. those which give a physical resemblance to the ori-
ginal, are often used in engineering, architecture and other branches of
study. The nautical properties of a proposed oil-tanker, for €xample, can
be studied by constructing a small-scale model and simulating stormy
weather in a laboratory. Operational research uses a variety of quantitative
models and formulae which are mathematical or statistical in origin. A firm
deciding upon its stock-ordering policy could use the simple model derived
on page 90:

o- (%)

where Q is the most economical size of batch in which to order stock, D is
the total annual demand, P is the cost of placing one order, S is a measure of
stock-holding costs and C is the unit cost of the items. This is an a priori
model, a general description constructed from first principles. The expression

p= 80

g +65
where Q is the number of units of a commodity demanded, and P is the
unit price, is a simple model showing how prices change as demand
changes, and which is likely to have been obtained by observing a number
of pairs of values of P and Q for this commodity and fitting a relationship
which best suits them. Such a model is empirical or a posteriori, though the
general shape of the model, and in particular the positions of P and Q,
reflect simple economic theory. The letters in both models indicate vari-
ables. Those which are determined by factors outside the defined system
are called exogenous; for example, in the stock model, D, total demand,
and the other factors on the right-hand side are determined by the size of
the firm’s market, salaries of order clerks, etc. Q, in this context, is an
endogenous variable, because it influences the system from within. The
batch size, for example, will affeet the firm’s storage and transport policies.
In the second model Q will be exogenous and P endogenous.

The reason for constructing an operational research model is optimisa-
tion, i.e. the calculation of the best value for a particular set of conditions.
In the stock model Q gives the size of batch which will give the lowest
average figure of unit cost when the combined effect of purchase, ordering
and holding are taken into account. An optimum may be a maximum
value: we may, for example, in planning vehicle routes between a series of
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towns served by a delivery system choose that plan which makes the great-
est use of vehicle capacity.

The two models quoted so far are comparatively simple. They are static
in the sense that the only interrelationship between the factors involved is
that described by the model; the effect does not itself influence the values
of the factors causing it. But this is not always so. Consider the second
model. In the long run a change in price will induce changes in quantities
being produced for sale, and a more sophisticated model would be needed
to do justice to the situation. Models which make allowance for changes
induced in the system by its own operation are called dynamic. Where a
model incorporates an allowance for the time taken for one factor to
affect another, the variables are said to be lagged.

Where operational research methods are applied to large organisations
the great problem is to reconcile the policies which models describing the
separate parts would suggest. In a large manufacturing firm a model may
show the scale of output which will minimise average production costs: but
a model of the market may suggest a different figure for maximum profits.
Neither of these levels may be consistent with the level of production which
best suits the firm’s capital structure and financial resources. Overall mod-
els which attempt to cover all the variables are sometimes constructed. Of
necessity they are computer operated, and they constitute important tools
of management. Operational research is scientifically based. Facts are
studied objectively, hypotheses framed, tested and re-framed if necessary.
Models which are constructed have the same logical status as theories in
the natural sciences. Today they are indispensable tools of management,
But the successful running of large enterprises, whether for public good or
private profit, depends upon informed personal judgement, so that man-
agement becomes an art and not merely a science.
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Queueing and Waiting-time Problems

An early application of operational research methods was to the problems
of queueing. The queues formed in a modern supermarket by customers
waiting to pay for baskets of goods typifies quantitative problems found in
other business and industrial situations. Each cash-till is approached by a
single service-channel, each customer is a unit, and the service-channels and
tills or service-points, to use a more general term, form a system. The
fundamental problem is to strike the right balance between customers’
demands for services and the organisation’s supply of service somewhere
between the extremes of excessive queueing and uneconomical manning of
service-points. The first example shows that even when the arrival rates of
customers and the service times are fixed — a simple situation rarely met in
practice — the system is very sensitive to small changes in rates or times.

Example 2.1 The stores of a large organisation issues material at the
constant rate of 10 orders per hour. The stores open at 9.00 a.m. and
workers arrive in succession at the rate of 8 per hour, as soon as the store
opens. Assuming a single service-channel: ,
(i) For what proportion of the first hour will the storekeeper be issuing
material?
(ii) What change in (a) arrival rate or (b) service rate would result in
the storekeeper being fully employed without queueing occurring?
(iii) Investigate the queueing that would arise at the original service
rate, but with workers arriving at a new rate of 12 per hour.

(i) An issue rate of 10 per hour means that one worker can be supplied in
6 min. But if workers arrive at 8 per hour, they will arrive at
60 min./8 = 74 mins., and there will be a gap of (74 — 6) min. = 14
min. after each. Queueing will not occur, and the storek-eper will be

employed
8 x6min. 1
_—r.mn X —00= 80% of the time
60 min. 1

(i1) Either (a) the storekeeper slows down to 8 per hour (the arrival rate),
or (b) the workers increased their arrival rate to 10 per hour (the
service rate). .
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FiG. 2.1 Workers queueing at stores

(iii) Figure 2.1 shows how a queue would build up gradually. The second
worker, arriving at 9.05 a.m., would queue for 1 min. before the
storekeeper was free to start supplying him at 9.06 a.m. After
9.20 a.m. at least 2 people would be in the system. At 9.35 a.m. 3
would be in the system for a short time, and after 9.45 a.m. there
would never be fewer than 3, antil the arrival of workers stopped.
Congestion would increase progressively and successive workers
would have to wait increasingly longer. The twelfth worker, for exam-
ple, would spend 16 min. in the system. With a single service point the
number ‘in the system’ = 1 being served plus number waiting, so that

from 9.45 a.m. the queue would contain 2 workers.

Under these simplified conditions whether queueing occurs depends
upon the traffic intensity, a quantity indicated by p (Greek — pronounced
rho), and calculated by dividing by the average number of units arriving in
unit time A (Greek lambda) divided by u (Greek mu), the average number
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of services completed in unit time, i.e.

In Example 2.1 the opening value of p equals

8 arrivals/hour _
10 orders/hour

for (ii) (a) §= and (b) 1_3 =1

1
and for (iii) -§2 =1.5

Where both u and A are unvarying the three cases just studied demonstrate
that if p < 1 no queueing will occur and if p = 1 the service facility will
be in continuous use, and if p > 1 queueing will start with the second
arrival and will increase with subsequent arrivals.

In practice the above calculations have been oversimplified: no allow-
ance has been made for the time that must elapse between finishing one
service and starting the next. Initially this might appear trivial, but after
several services a cumulative and disruptive lag would develop. An even
more serious criticism can be made: neither the arrival rates nor the service
times are likely to be rigid; variations in either will upset the neat calcu-
lations made so far and, where variations are combined, the disturbance to
the original system will be great. In general if queueing is occurring, any
increase in arrival rate or service time will make it worse, whereas a reduc-
tion in service time will only improve the situation if constantly matched
with an increase in arrival rate.

If the two variables were completely random, queueing calculations
would be almost impossible to make, though, given the limits of variation,
methods of simulation (see Chapter 3) might be used. Fortunately, input
and output in queueing situations can often be described by two statistical
distributions, the first being introduced by the next example. -

Example 2.2 Assume that the arrivals of workers in Example 2.1 follow
the Poisson distribution, with A = 8 per hour, and calculate the separate
probabilities of 4, 5, 6, etc., up to 12 workers arriving in 1 hour.

The Poisson formula gives the probability of X events as follows:

—m X

m.
X’

Pix) = d
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e™*8* _ 0.0003546 x 4096
4l 4x3x2x1

when X =4, P(x) = = 0.057

and

e %8°
5!

when X = 5, P(x) =0.092

Other values, directly calculated. or more conveniently calculated by the
recursion method (see Business Statistics by Example, by A.E. Innes
(Macmillan, 1974, pp. 238-9), give

P(4) = 0.057
P(5) = 0.092
P(6) = 0.122
P(7) = 0.140
P(8) = 0.140
P(9) = 0.124

P(10) = 0.099

P(11) = 0.072

P(12) = 0.048

Probabilities decrease either side of the 412 range. which can be seen to
account for 89.4 per cent of the probabilities. Hence, we can expect some
divergency, but well over 50 per cent of the time arrivals are likely to be in
the (6-10) per hour range. The use of formulae, to be stated presently,
does not require Poisson calculations, but study of probabilities of the kind
calculated above will show why queueing sometimes occurs well before p
approaches unity.

The Poisson distribution calculates the frequency of events over set
periods of time. Calculation of varying service times dgpends upon a dis-
tribution which is a kind of obverse of Poisson, because it deals with
lengths of times between events. The next example introduces it.

Example 2.3 (i) Take the service times for Example 2.1 to be exponen-
tially distributed, with expected frequency of 10 per hour. Calculate and
graph the probabilities of service times of less than 6 min. and .more than
6 min. (ii) Calculate by integration the proportion of service times that can
be expected to be (a) between 5 min. and 7 min., and (b) between 3 min.
and 9 min.

The probability density function for the exponential distribution is

Y = pe™

where Y is the probability density, u is the expected number of events in
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unit time and X the number of units of time that will elapse before the
recurrence of an event, on the assumption that an event has just occurred.

Working in minutes, if 10 services occur in 1 hour, 1 occurs in 6 min.,
and in 1 unit of time, i.e. 1 min., 1/6 of a service will occur. Assuming no
break occurs between the ending of a service and the beginning of the next,
x is a service time. When x = 0 min.

1 _exo 1 1
= - = - X = -
Y 6e =& 1 3
when x = 1 min.,
1

Y =-6—e'”6" " =0.1411

The following table summarises these and similarly calculated values:

Service time (min.) Probability density
0 0.1667
1 0.1411
2 0.1194
4 0.0857
6 0.0613
8 0.0439
10 0.0315
20 0.0059
30 0.0011

(ii) (a) The required probability is given by the shaded area in Figure 2.2,
and is obtained as the value of the probability density function integrated
between the limitsx = Sandx = 7: - -

| 1 T
Ll — — p—xI6 = _
J, 57 6[1 ¢ ]5 6

{(1 — 0.3114) — (1 — 0.4346)} = 0.02053
(b) For the wider limits ‘

1 - 1°
Z [1 - e—*"’] = 0.0639
3

Hence, the wide variations in service times are illustrated, only 2.053 pér
cent lying within a minute either side of the average, and only 6.39 per cent
within 3 min. either side. ’
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FiG. 2.2 Exponential distribution of service times

Such wide random variations in arrival and service times show why the
approach of Example 2.1 needs considerable modification and why the
measurements of queueing situations are usually in terms of probability.
The combination of Poisson and exponential conditions has produced a
series of formulae used to solve quantitative problems and the next exam-
ples introduce them.

Example 2.4 A tyre centre is open 10 hours per day for repairing punc-
tures, the average repair time being 20 min. Customers arrive at an aver-
age rate of 20 per day. Calculate (i) the probability that a motorist has to
wait upon arrival, and (ii) the number of hours during a 6-day working
week when punctures are not being repaired.
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(i) The probability, P, is the traffic intensity p already defined.
A = 20 per 10-hour day = 2/hour
w = average number of services in 1 hour = 60 min./20 min. = 3
Therefore P = 2/3 (= 66.7 per cent)
(ii) The probability of a motorist being ‘in the system’, i.e. either having a

puncture repaired or waiting for it to be repaired, is given by p. Punc-
tures will not be repaired when there is no one in the system, i.e.

the probabilityis 1 —P =1 —2/3=1/3

in a full week for 0 hours = 20 hours.

Excessive queueing can be to the disadvantage of management not only
because of physical congestion, but because customers may renage, i.e.
leave the queue before being served. The next example introduces another
formula used in such situations.

Example 2.5 A cashier at a supermarket check-out points deals with cus-
tomers at an average rate of 30 per hour: (i) with customers arriving at an
average rate of 25 per hour, calculate the average length of queue when a
queue of 1 or more forms; (ii) what improvement is needed in service time
if the average queue-length is to be reduced by 1?

(i) The formula for average length of queue is

1-p

A = 25/hour, . = 60 min./2 min. = 3Q/hour, giving

and averége length is

1

156" ©

Note that the formula is based on the number of queues and does
not reflect occasions when no queue occurs.
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(i) If the average isto be (6 —1) =35
BN
1-p

ie. 1 =5~ 5p,giving p=10.8
25

— =0.8,
®

25
ie.pu= (-)—S/hour,

P A . . .
giving an improved service time of

m min. = 1 min. 55 sec.

The next example introduces a formula which takes into account times
when the queue length = 0 as well as occasions when it is greater than 0.

Example 2.6 (i) Use the data in Example 2.5(i) to calculate the average
queue length on the basis just described. (i) If the shop is open from
9.0 a.m. to 5.30 p.m., using the unimproved service rate, calculate the
number of hours when no queue can be expected.

(i) The formula is

P
1-p
For p = 5/6, the average is
(516> 25
T-s/6-6

(ii) By the method of Example 2.4 (ii)
1-p=1-5/6=1/6

Total hours = 84, giving 84/6 hours = 1} hours without a queue.

Often we shall need to know the chance that a queue will be a particular
length between nil and its maximum state. The probability of n people
being in the system is given by

P(n) =(1-p)p"

and the next example uses it.



