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This volume is dedicated to the memory of Will Light who was
a driving force in creating and running the first eight summer
schools. _



Preface

The Tenth LMS-EPSRC Numerical Analysis Summer School was held at the
University of Durham, UK, from the 7th to the 19th of July 2002. This was the
second of these schools to be held in Durham, having previously been hosted
by the University of Lancaster and the University of Leicester. The purpose of
the summer school was to present high quality instructional courses on topics
at the forefront of numerical analysis research to postgraduate students. The
speakers were Franco Brezzi, Gerd Dziuk, Nick Gould, Ernst Hairer, Tom
Hou and Volker Mehrmann.

This volume presents written contributions from all six speakers which
are more comprehensive versions of the high quality lecture notes which were
distributed to participants during the meeting. At the time of writing it is now
more than two years since we first contacted the guest speakers and during
that period they have given significant portions of their time to making the
summer school, and this volume, a success. We would like to thank all six of
them for the care which they took in the preparation and delivery of their
material.

Instrumental to the school were two groups: The five tutors who ran a
very successful tutorial programme (Philip Davies, Sven Leyffer, Matthew
Piggott, Giancarlo Sangalli and Vanessa Styles); the two “local experts”,
that is distinguished UK academics who, during the meeting, ran the aca-
demic programme on our behalf leaving us free to deal with administrative
and domestic matters. These were Charlie Elliott (University of Sussex) and
Sebastian Reich (Imperial College). In addition to chairing the main sessions
the local experts also ran a successful programme of contributed talks from
academics and students in the afternoons. The UKIE section of SIAM con-
tributed prizes for the best talks given by graduate students. The local experts
took on the bulk of the task of judging these talks. After careful and difficult
consideration, and after canvassing opinion from other academics present, the
prizes were awarded to Angela Mihai (Durham) and Craig Brand (Strath-
clyde). The general quality of the student presentations was impressively high
promising a vibrant future for the subject.

The audience covered a broad spectrum, seventy-three participants rang-
ing from research students to academics from within the UK and from abroad.
A new feature of this meeting was that, thanks to the generosity of the LMS,
we were able to fund a small number of students from continental Europe.
As always, one of the most important aspects of the summer school was pro-
viding a forum for EU and UK numerical analysts, both young and old, to
meet for an extended period and exchange ideas.

We would also like to thank the Durham postgraduates who together
with those who had attended the previous Summer School ran the social
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programme, Fionn Craig for dealing with registration, Rachel Duke, Tanya
Ewart, Fiona Giblin, Vicky Howard and Mary Bell for their secretarial sup-
port and our families for supporting our efforts.

We thank the LMS and the Engineering and Physical Sciences Research
Council for their financial support which covered all the costs of the main
speakers, tutors, plus the accommodation costs of the participants.

James F. Blowey, Alan W. Craig and Tony Shardlow
Durham, March 2003
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Subgrid Phenomena and Numerical Schemes

Franco Brezzi and Donatella Marini

Dipartimento di Matematica, Universita di Pavia, and IMATI-C.N.R., via Ferrata
1, 27100 Pavia, Italy

Abstract. In recent times, several attempts have been made to recover some in-
formation from the subgrid scales and transfer them to the computational scales.
Many stabilizing techniques can also be considered as part of this effort. We discuss
here a framework in which some of these attempts can be set and analyzed.

1 Introduction

In the numerical simulation of a certain number of problems, there are phys-
ical effects that take place on a scale which is much smaller than the smallest
one representable on the computational grid, but have a strong impact on
the larger scales, and, therefore, cannot be neglected without jeopardizing
the overall quality of the final solution.

In other cases, the discrete scheme lacks the necessary stability properties
because it does not treat in a proper way the smallest scales allowed by the
computational grid. As a consequence, some ”smallest scale mode” appears as
abnormally amplified in the final numerical results. Most types of numerical
instabilities are produced in this way, such as the checkerboard pressure mode
for nearly incompressible materials, or the fine-grid spurious oscillations in
convection-dominated flows. See for instance [19] and the references therein
for a classical overview of several types of these and other instabilities of this
nature.

In the last decade it has become clear that several attempts to recover
stability, in these cases, could be interpreted as a way of improving the sim-
ulation of the effects of the smallest scales on the larger ones. By doing that,
the small scales can be seen by the numerical scheme and therefore be kept
under control.

These two situations are quite different, in nature and scale. Nevertheless
it is not unreasonable to hope that some techniques that have been developed
for dealing with the latter class of phenomena might be adapted to deal with
the former one. In this sense, one of the most promising technique seems
to be the use of Residual-Free Bubbles (see e.g. [10], [18].) In the following
sections, we are going to summarize the general idea behind it, trying to
underline its potential and its limitations. In Section 2 we present the contin-
uous problems in an abstract setting, and provide examples of applications,
related to advection dominated flows, composite materials, and viscous in-
compressible flows. For application of these concepts to other problems we
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refer, for instance, to [13], (14], [16], (18], [24]. In Section 3 we introduce the
basic features of the RFB method. Starting from a given discretization (that
might possibly be unstable), we discuss the suitable bubble space that can be
added to the original finite element space. Increasing the space with bubbles
leads to the augmented problem, usually infinite dimensional, which, in the
end, will have to be solved in some suitable approximate way. In Section 4
we give an idea of how error estimates can be deduced for the augmented
problem. In Section 5 we discuss the related computational aspects, and we
present several strategies that can be used to deal with the augmented prob-
lem, in order to minimize the computational cost. We shall see in particular
that several other methods that are known in the literature can actually be
seen as variants of the RFB procedure, in which one or another of the above
strategies is employed. This includes, for advection dominated problems, the
classical SUPG methods (as it was already well known, see, e.g., [4]) as well
as the older Petrov-Galerkin methods based on suitable operator dependent
choices of test and trial functions [25]. For composite materials, this includes
both the multiscale methods of [22], [23], and the upscaling methods of [1],
[2]. Finally, in Section 6 we draw some conclusions.

2 The Continuous Problem

We consider the following continuous problem

(2.1)

find u € V such that
L(u,v) = (f,v) Vvey,

where V is a Hilbert space, and V' its dual space, £(u,v) is a continu-
ous bilinear form on V x V, and f € V' is the forcing term. We assume
that, for all f € V', problem (2.1) has a unique solution. Various prob-
lems arising from physical applications can be written in the variational form
(2.1), according to different choices of the space V and the bilinear form L.
Typical choices for V, when V is a space of scalar functions, are the follow-
ing: if ® ¢ R%, (d = 1,2,3) denotes a generic domain, V' could be, for in-
stance, L2(0), H'(0), H}(0), H*(0) or L}(0), the last one being the space
of L2—functions having zero mean value. In the case where V' is a space of
vector valued functions, a first choice could be to take the Cartesian product
of the previous scalar spaces. Other typical choices for V' can be:

H(div;0) := {1 € (L*(0))% such that V - T € L*(0)},
Ho(div; O) := {T € H(div; O) such that 7 -n = 0 on 80},
or also, for a generic domain O C R?,

H(curl; 0) == {7 € (L*(0))? such that V A 7 € (L*(0))%}
Ho(curl; ©) := {r € H(curl; 0) such that 7 An =0 on 60}.
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Product spaces are also frequently used: for instance, H(div; O) x L?(0), or
(HY(0))? x LE(0), etc. Next, we provide some classical examples of problems
and we indicate the corresponding space V, the bilinear form £, and the
variational formulation.

Ezample 2.1. Advection-dominated scalar equations:

—eAu+c-Vu=f inQ; u=0 ondN
V= H(Q); L(u,v):= [eVu-Vvde + [yc- Vuvds; (f,v) = [, fode
L(u,v) = (f,v) VvevV.

Ezample 2.2. Linear elliptic problems with composite materials:
—V-(a(z)Vu)=f inQ; u=0 ondfN
V = Hy(Q); L(u,v) := [, a(z)Vu- Vvdz; (fiv) == [, fvdz
L(u,v) = (f,v) YveV

(where a(z) > ap > 0 might have a very fine structure).

Ezample 2.3. Composite materials in mixed form, i.e., the same problem of
the previous example, but now with:
o=-aVy in V-e=f in; 1 =0 on 0}
V =X x & ¥ = H(div; Q); & = L3(N)
ao(o,7) = [galo-Tdz, b(r,p) := [V -Tpdz
L((o, ), (T,9)) =ao(o,7) = b(T,¥) +b(o,9); (f,(T,9)) := [ fedr
L{(o,¥),(1,9)) = (f,(1,9)) V(r,p)eV.

Ezample 2.4. Stokes problem for viscous incompressible fluids:
—Au+Vp=f in V-u=0 in; u=0 on 89
Vi=Ux@Q U= (H@)Y Q=L
a1(u,v) == [, Vu: Vvdzr b(v,q) := [V -vqdr
L((u,p), (v,9)) :=a1(ua,v) —b(v,p) +b(u,q);  (f,(v,q)) = [of vdz
L{(w,p),(v,@)) =(f,(v,@)) V(v,q)eV.

3 From the Discrete Problem to the Augmented
Problem

Let 7; be a decomposition of the computational domain 2, with the usual
nondegeneracy conditions [12], and let V;, C V be a finite element space.
The original discrete problem is then:

(3.1)

find uy € V, such that
L(un,vn) = (f,on) Voo €V
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Note that we do not assume that (3.1) has a unique solution. Indeed, the
stabilization that we are going to introduce can, in some cases, take care
of problems originally ill-posed. Our aim is, essentially, to solve eventually
a final linear system having as many equations as the number of degrees of
freedom of Vj. Apart from that, we are ready to pay some extra price, in
order to have a better method. In some cases, the total amount of additional
work will be small. In other cases, it can be huge. However, we want to be
able to perform the extra work independently in each element so that we can
do it, as a pre-processor, in parallel. This implies that we are ready to add
as many degrees of freedom as we want at the interior of each element. For
that, to V and 7j, we associate the mazimal space of bubbles

B(V;Th) = HBV with By (K) = {v €V : supp(v) C K}.

Let us give some examples of the dependence of By (K) on V.

if V = H}(R) then By (K) = H}(K)

if V. = H'(Q) then By(K) = {ve HY(K),v=0o0n K NQ}

ifv = LZ(Q) then By (K) = L?(K)

if V = L2(Q) then By(K) = Li(K)

if V = H2(R) then By (K) = H2(K)

if V = Hy(div; Q) then By (K) = Ho(div; K)

if V = H(div; Q) then By(K) = {r € H(div; K), 7-n =0 on 0K N}

Similar definitions and properties hold for the spaces H{curl; O), but we are
not going to use them here.

Let us now turn to the choice of the local bubble space By (K). If possible,
we would like to augment the space Vj, by adding, in each element K, the
whole By (K). This would change Vj into Vi + B(V; 7). However, some
conditions are needed, as we shall see below. This might forbid, in some cases,
taking the whole By (K) in the augmentation process: some components of
By (K) have to be discarded. This will become more clear in the examples
below. At this very abstract and general level, we assume that, in each K €
T, we choose a subspace By (K) C By (K) and, for the moment, “the bigger
the better”. A first condition that we require is that, for every g € V', the
auxiliary problem

{ find wp x € Bi(K) such that (52)

L(wp k,v) = (9,v) V v € Bp(K)

has a unique solution. We point out that the choice “the bigger the better”
for By(K) is made (so far) in order to understand the full potential of the
method. As we shall see, in practice we will need to solve (3.2) a few times
in each K. This implies that a finite dimensional choice for Bx(K) will be,
in the end, necessary.
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Having chosen B (K), we can now write the augmented problem. For that,
let

Va :=Vp + g Br(K). (3.3)

Two requirements have to be fulfilled: first of all, in (3.3) we must have a
direct sum, and, second, for every f € V', the augmented problem

find ug € V4 such that
{ asa (3.4)

L(ua,va) = {f,va) Vuvg €Vy

must have a unique solution. To summarize, in the augmentation process
three conditions have to be fulfilled:

1) the local problems (3.2) must have a unique solution;
2) in (3.3) we must have a direct sum;
3) the augmented problem (3.4) must have a unique solution.

These are then the requirements that can guide us in choosing Bp(K) in the
various cases.

Examples of choices of By (K).

Ezample 3.1. Referring to Examples 2.1 and 2.2 of the previous section, sup-
pose that V3 is made of continuous piecewise linear functions. In this case it
is easy to check that the choice By (K) = Bv(K) = H} (K) verifies all of the
three conditions.

Ezample 38.2. Suppose now that, always referring to Examples 2.1 and 2.2, V},
is made of continuous piecewise cubic functions. The choice By (K) = By (K)
is not viable anymore, as clearly condition 2) is violated: V}, contains functions
of By (K). In situations like this we should then choose a different B, (K),
but we could also reduce the original space Vj. This is actually the simplest
strategy, and we are going to follow it. Here, for instance, we can just remove
the cubic bubble from V; |k and take a reduced space, still denoted by Vi with
an abuse of notation, as a space of any serendipity cubic element (see, for
instance, the element described in [12], page 50). Or we might take V} as the
space of functions v, that are polynomials of degree < 3 at the interelement
boundaries and verify Lv, = 0 separately in each K. Notice that these two
choices produce the same augmented space Vy4, and hence the same solution
uy to (3.4).

Ezample 3.3. Let us consider the problem of Example 2.3, and assume that
Vi = Tn x Uy is made by lowest order Raviart-Thomas elements (see for
instance [3]). For this problem we have

By(K) = {r € H(div;K), T -n= 0 on 8K N Q} x L*(K).

we notice now that taking By (K) = By (K) would not guarantee that prob-
lem (3.2) has a unique solution. Indeed, for internal elements K, the inf-sup
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condition is not satisfied, since f x divrvdzr = 0V v constant on K. Condi-
tion 2) would also be violated by the choice Br(K) = By (K): in fact, U
being the space of piecewise constants, Uy x contains bubbles of L*(K). A
possible remedy in this case is to take

Br(K) = Ho(div; K) x L3(K) C By (K).

With this choice V}, remains the same, and B}, is the space of all pairs (7,v) €
V such that 7 has zero normal component at the boundary of each element,
and v has zero mean value in each element. The same choice for By would
be suitable also in the case of higher order Raviart-Thomas spaces (or, say,
for BDM spaces; see always [3]), but then V3 should lose all internal degrees
of freedom, apart from the piecewise constant scalars.

Ezample 3.4. Let us now examine the Stokes problem of Example 2.4, and
assume that Vj, is made of piecewise quadratic velocities in (Hg(2))¢, and
discontinuous piecewise linear pressures in L2(Q), a choice which is known not
to be stable, but can be stabilized with the present technique. Actually, in this
case one can see that By (K) = (H}(K))? x L3(K). Taking Br(K) = By (K)
would violate condition 2), but we can reduce the space V4, taking it to be
the space of quadratic velocities and constant pressures. It is easy to check
that with this last choice we have a direct sum in (3.3). Moreover, problem
(3.4) has a unique solution, because the inf-sup condition is now verified in
Va.

Ezample 3.5. Let us again consider the Stokes problem of Example 2.4, but
now with V,, = Un x Qp made of piecewise linear continuous velocities in
(HX(€))4, and piecewise constant pressures in L3(€). It is well known that
for this choice the inf-sup condition does not hold. Moreover, if we augment
V., with bubble functions, in any way, the augmented problem (3.4) will
never verify the inf-sup condition. To see that, augment the velocity space:
Ua = Up + Ng(H(K))?* as much as you can, and augment the pressure
space: @4 = Qn + {0} as little as you can. For every v € (H3(K))? and for
every constant ¢ in K, we clearly have (div v, q) = 0. Hence, for g € Qn:

(divv,g) _ _ (divo,g)
v Wl wetn Mol

and we know that the last quantity cannot bound |lgllo for all ¢ € Qn. We
clearly see that, in cases like this, our strategy is totally useless, and should
not be applied.

4 An Example of Error Estimates

To give an idea of how to proceed to obtain error estimates, let us consider,
as an example, a general singular perturbation problem where

L(u,v) := €a1(u,v) + ao(u,v)



