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PREFACE

This book" is based! on the lectures read by authors at Moscow
State University for a number of years.

As in Part 1, the authors strived to make presentation systematic
and to set off the most important notions and theorems.

Besides the basic curriculum material, this book contains some
additional questions that play au important part in various branches
of modern mathematics and physics (the theory of measure and
Lebesgue integrals, the theory of Hilbert spaces and of self-adjoint
linear operators in these spaces, questions of regularization of Fourier
series, the theory of differential forms in Euclidean spaces, etc.).
Some of the topics, such as the conditions for termwise differentiation
and termwise integration of functional sequences and functional
series, the theorem on the change of variables in a multiple integral,
Green’s and Stokes's formulas, necessary conditions for a bounded
function to be integrable in the sense of Riemann and in the sense of
Lebesgue, are treated more generally and under weaker assumptions
than usual.

As in Part 1, we discuss in this book some questions related to
computational mathematics, including first of all approximate cal-
culation of multiple integrals in the supplement to Chapter 2 and
calculation of the values of functions from the approximate values
of Fourier coefficients (A.N. Tichonoff's regularization method)
in the Appendix.

The material of this book, together with that of Part { published
earlier, constitutes an entire university course in mathematical
analysis.

Note that throughout this text Part 1 is referred to as Volume 1
and designated [1]. It should also be stressed that when reading this
book Chapter 8, The Lebesgue Integral and Measure, Chapter 11,
Hilbert Space, and all the supplements may be skipped without
impairing the understanding of the rest of the text.
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The authors feel deeply indebted to A.N. Tichonoff and A.G.!Svesh-
nikov for much valuable advice and numerous profound criticisms,
to Sh.A. Alimov, who has done more than just editing this book,
to L.D. Kudryavtsev and S.A. Lomov for a great number of valuable
criticisms, to P.S. Modenov and Ya.M. Zhileikin, who have made
available to the authors materials on field theory and approximate

methods of evaluating multiple integrals.
V. Ilyin, E. Poznyak
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CHAPTER 1

FUNCTIONAL SEQUENCES
AND FUNCTIONAL SERIES

In this chapter we shall study sequences and series whose members
are not numbers but functions defined on some given set. Such
sequences and series are widely used to represent the functions and
to compute them approximately.

1.1. UNIFORM CONVERGENCE

1.1.1. The functional sequence and the functional series. Let {z}
be some set*. Then, if we assign to each n of the natural numbers1, 2, . ..
.« o N, ... by a definite rule some function f, (z) defined on {z}, the
set of the numbered functions f; (z), f(%), . . -, fu (%), . . . is said to
be a functional sequence.

The individual functions f, (z) are called members or elements of
the sequence, and {z} is its domain of definition or simply domain.

The symbol {f, (x)} will be used to designate a functional sequence.

The formally written sum

>3

Ziun(x)=u,(z:)—i—u2(x)+...—I—u,.(:c)+... (1.1)

of an infinite number of elements of{a functional sequence {u, ()}
will be called a functional series.

The terms u, (z) of that series are functions defined on some set {z}.

The set {z} is called the domain of definitior, or domain, of the
functional series (1.1).

As in the case of the number series, the sum of the first n terms of
(1.1) are called the nth partial sum of that series.

It should be stressed that the study of functional series is perfectly
equivalent to the study of functional sequences, for to every functional
series (1.1) uniquely corresponds a functional sequence

S1(2)y Sa(X)y oo Sn (%) 0o (1.2)

. * In particular, by {z} we may imply both the set of é)oints of a straight
line and the set of points z = (z,, z,, . . ., zm) of a Euclidean space EM,
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of its partial sums, and, conversely, to every functional sequence
(1.2) uniquely corresponds a functional series (1.1) with terms

Uy (z) = 81 (2)y Un (2) = 8 (2) — Sy () for n>2
for which the sequence (1.2) is a sequence of partial sums.

Here are examples of functional sequences and series.

1, (x) % (@) fa(x)
1 14 I

8

0 1 £ 0 12 1 x 0|l i/n

Fig. 1.1

Example 1. Consider a sequence of functions {f, (z)} each defined

.on the closed interval 0 < z << 1 and having the form
. (1 —ra) when O0a<<1/n,

fr (”)’Z{ 0 when 1/n<a<1.

Figure 1.1 gives the graphs of the functions f; (z), f; (z) and f, (7)-
Example 2. As an example of a functional series consider the fol-
lowing power series in z:

(1.3)

zk

T s SRR L (1.4)

] nl
h=1

Notice that the (rn 4+ 1)th partial sum of (1.4) differs from the
Maclaurin expansion of e* only by the remainder term R, 1, (z).

1.1.2. Convergence of a functional sequence at a point and on a set.
Suppose a functional sequence (or series) is defined on a set {r}.
Fix an arbitrary point z, of {z} and consider all the elements or
the sequence (or the terms of the series) at z,. We obtain a number
sequence (or series).

If this number sequence (or series) converges, the given functional
sequence (or series) is said to converge at z,.

The set of all points z, at which a given functional sequence (or
series) converges is called the domain of convergence of that sequence
(or that series).

At various particular cases the domain of convergence may either
coincide with the domain of definition or form a part of the domain
or be an empty set.



