FURTHER COMPUTER
PROGR AMMING

IN BASIC

728722/
/3 &2

RTERCOVPUTE
PROGRAMMNG
NBASC

Peter Bishop

£Iro byuy

Neon 5506444

,

0257// 7

Thomas Nelson and Sons Ltd
Nelson House Mayfield Road
Walton-on-Thames Surrey KT12 5PL

P.O.Box 18123 Nairobi Kenya

116-DJTC Factory Building
Lorong 3 Geylang Square Singapore 1438

Thomas Nelson (Hong Kong) Ltd
Watson Estate Block A 13 Floor
Watson Road Causeway Bay Hong Kong

Thomas Nelson (Nigeria) Ltd
8 llupeju Bypass PMB 21303 lkeja Lagos

© Peter Bishop 1982 _
First published by Thomas Nelson and Sons Ltd 1982

ISBN 0-17-431266-7
NCN 200-3427-0

All rights reserved. No part of this
publication may be reproduced. stored
in a retrieval system, or transmitted,

in any form or by any means, electronic,
mechanical, photocopying, recording or
otherwise, without the prior permission
of the publishers.

Designed by The New Book Factory, London
Phototypesetting by Parkway Group. London and Abingdon
Printed and bound in Great Britain by

Butler & Tanner Ltd

Frome and London

TR |
Vi

1 2 K3
PRI)
LU SO

TN s s

aansdan

» B

i P

Preface

The aim of this book is to teach computer programming in a high level language,
using Basic as an example. The emphasis is on the concepts, skills and techniques
of programming, and on a disciplined approach to the task of designing and
writing programs. The book is tailored to meet the requirements of all the
examination boards in the United Kingdom which are offering Computer
Studies or Computing Science at Advanced level. Questions from past examina-
tion papers in these courses are included, as is a list of suggestions for projects
which are generally written as part of these courses.

This book has also been written with the requirements of the computing
industry in mind, particularly with regard to programming standards and
approaches to writing programs.

It is realised that a book of this nature is useful for a number of other
purposes. These include a reference book for teachers preparing to teach
programming at O or A-level, a textbook for students of equivalent courses at
colleges of further education, and a foundation book for students embarking on
computing courses at universities or polytechnics. It is also ideal for the owner of
a personal microcomputer who wants something more than a superficial
treatment of the subject.

The book is structured into five parts, each part comprising several chapters.
The first part introduces the features of Basic language, emphasising at the same
time the essential concepts of programming. ‘Frills’ of the language, which are
limited to certain types of computer, are deliberately avoided. Flow diagrams
are introduced to illustrate program structure, but are not regarded as an
essential part of designing and writing programs. Program examples and
exercises in this part are deliberately kept short and simple. The second part of
the book is independent of any programming language, and concerns an
approach to writing programs. It deals with the vital questions of program design
and program structure, as well as checking, documenting and maintaining
programs. Basic language programs are used to illustrate the techniques
discussed.

The third and fourth parts relate programming to the- wider theory of
computing. Part three describes the fundamental programming operations of

sorting, searching and merging, while part four deals with programming using

such data structures as stacks, queues and lists.

The final part of the book deals with a wide variety of programming
applications. By and large the applications are selff-contained, and include
graphics, simulation and syntax analysis. Although the majority of this book has a
low mathematical content, two chapters in this part are an exception to this rule.
They enable those with some knowledge of numerical analysis to combine it
with their skill in programming, but may be omitted without loss of continuity.

The book concludes with a list of project suggestions, a revision exercise, a
Basic summary and a glossary of programming terms.

bt 3L TH s, T R R ST T 2 =

L

Acknowledgements

A number of people have helped me in the planning and writing of this book. At
Imperial College, Valerie Downes reviewed the plans for the book and a
number of specimen chapters. john Darlington gave advice on the topic of
program design, and Jill Rout typed the specimen chapters.

| am also most grateful to Patrick Sutton who reviewed the book, and to Ruth
Bush who typed the entire manuscript.

Thanks are also due to the Associated Examining Board for the General
Certificate of Education, the Joint Matriculation Board, the Oxford Delegacy of
Local Examinations, and the University of London School Examinations Depart-
ment for their kind permission to reproduce questions from past examination

papers.

e e s

Contents
overview

| Introduction
2 Basic Language

Features of Basic Language
Input, Processing, Output
Branches

Loops

Character Handling
Arrays

Functions

Subprograms

File Handling

O VONONUV h W

An Approach to Writing Programs
I} Program Design

12 Program Checking

3 Program Documentation

4 Program Maintenance

Fundamental Programming Operations
15 Sorting ‘ ’

16 Searching

{7 Merging

Programming Fundamental Data Structures
I8 Stacks :

19 Queues

20 Lists

21 Trees

Programming Applications
22 Commercial Data Processing

23 interactive Programs

24 Graphics

25 Critical Path Analysis

26 Numerical Analysis

27 Simulation

28 Syntax Analysis .
29 Simulating a Model Computer

Projects v
30 Project Suggestions

Revision Exercises
Basic Summary
Glossary of Terms
Teachers' Notes
Index

Contents

I Introduction

i1
12
1.3
1.4
1.5

1.6

The Nature of Computer Programs
Views of Computer Programs

The Elementary View

The Toolsetting View

The Layer View

Conclusion

Exercise |

2 Basic Language

2.1 The Development of Basic Language
22 The Objectives of Basic Language

23 The Problem: Many Versions of Basic
24 The Solution: One Reference Language and Many

Implementation Languages

2.5 The Reference Language
26 Implementation Languages

2.7 Essential Features of Basic Language

2.8 Program Structure

29 Line Structure

. 210 Data

211 Constants

2.12 Variables

2.13 Remarks

2.14 Implementation-dependent Features
2.15 Concdlusion

Exercise2
Features of Basic Language
3 Input, Processing, Output

34 Input

32 Keyboard Input

33 Input from Data Loaded with the Program
34 The RESTORE Statement

35 Output

3.6 OQutputtoa Printer or Display Screen
3.7 Example Program 3.1

3.8 Tabulating Output

39 Example Program 3.2

3.10 Processing

3.11 Arithmetic Expressions

3.12 Example Program 3.3

[313.13 Sequences of Statements on a Single Line

3.14 PEEKand POKE

3.15 Conclusion

Exercise 3

BBV N — -

St n

NVWVWRBOWMONNNSNNEO

10
10
e
10
R
H
12
13
I3
14
)
16
17
18
18
19
9

vii 4 Branches

Contents 4.
42
43
44

Simple Conditional Operations
Example Program 4.1
Compound Conditions
Example Program 4.2

4.5 Multi-way Branching
46 Example Program 4.3
4.7 Conditional Statements in Advanced Basic
048 Example Program 4.4
49 Conclusion
Exercise 4
5 Loops
5.t The Concept of Repetition
5.2 Repetition for a Specified Number of Times
53 Example Program 5.1
54 The Generai Form ofthe FOR . . . TO Statement
55 Nested Loops
56 Example Program 5.2
5.7 Branching Into and Out Of Loops
58 Example Program 5.3
59 Repetition While a Certain Condition is True
5.10 Example Program 5.4
5.11 Repetition Until a Certain Condition Becomes True
5.12 Example Program 5.5
5.13 Conclusion
Exercise 5

6 Character Handling

6.1 String Handling Facilities in Basic
6.2 Functions and Arguments
6.3 The Joining Operator +
64 ASC(XS$)
65 CHR$(X)
66 LEN(XS)
67 MID$(X$,A,B)
68 STR$(X)
69 VAL(XS)
6.10 Example Programs
6.11 Example Program 6.1
6.12 Example Program 6.2
6.13 Conclusion
Exercise 6

7 Arrays
7.1 The Nature of an Array
7.2 Some Uses for Arrays
7.3 Example Program 7.1
74 Two-dimensional Arrays
7.5 Example Program 7.2
7.6 Concusion

Exercise 7

Functions

8.1
82
£3
8.4

The Nature of a Function
AStandard BasicfFunctions

ABS (X

EXP£X)

LOG(X)

INT(X) ,

Example Program 8.1

RND(X)

Example Program 8.2

SGN(X)

SQR(X)

SINOX)

CosS(x)

TANCX)

ATN(X)

TAB(X) A

Example Program 8.3

User-defined Functions

Defining a Function

Using a Defined Function “

Example Program 8.4 _

Additional Features of User-defined Functions

Conclusion

Exercise 8

ams
The Nature of a Subprogram
Subprograms in Basic
Example Program 9.1
Passing Data to and from Subprograms
Example Program 9.2
Condusion -
Exercise 9

File Handling

10.1
102
10.3
104
10.5
10.6
107
10.8
10.9

The Nature and Uses of Files
File Handling in Basic
Creating a File

Writing to a File

Closing a File

Example Program 10.1
Opening a File for Reading
Reading from a File
Renaming a File

10.10 Erasinga File

10.11

10.12

Example Program 10.2

10.13 Conclusion

Exercise 10

File Handling Statements in Other Versions of Basic

-3

104
105

1o

H2
12
12
13
13
13
L4
Hé
e
1é
17
1z
19
120
120

ye

ix An Approach to Writing Programs

Contents

12

13

14

Program Design

1.2 The Objectives of a Well-designed Program
1.3 Less Desirable Objectives
114 Some Constraints
1.5 Design Techniques
11.6 Stepwise Refinement
1.7 Flow Diagrams
1.8 Worked Examples
1.9 Example Program | 1.1
11.10 Example Program 11.2
t1.11 Conclusion -

Exercise 1 |
Program Checking
2.t The Objectives of Program Checking
122 Some Checking Techniques
123 Dry Runs
124 Example [2.1
125 TestData
126 Example 12.2
12.7 Determining Under What Conditions a Program

Will Work ’
128 Example 12.3
129 Condusion
Exercise 12

Program Documentation
13.1 Types of Documentation
132 Programmer's Documentation
133 Objectives of Programmer's Documentation
134 Techniques for Writing Programmer’s Documentation
13.5 Variables and Flow Diagrams
136 Example I3.1
137 User Documentation
3.8 Objectives of User Documentation
139 Techniques for Writing User Documentation
13.10 Example 13.2
3.1t Conclusion

Exercise 13
Program Maintenance
4.1 Types of Program Maintenance
142 Some General Guidelines
143 Changes Within Program Modules
144 Example 14.1
145 Replacement of Modules
146 Example 14.2
147 Changes to the Structure of a Program
148 Example 14.3

What is Program Design?

122
122
122
123
124
124
124
124
124
125
128
142
143

145
145
145
146
146
146
147
148

148
149
150

151
151
151
151
151
152
152
153
153
154
154
155
156

157
157
157
158
158
161
161
162
162

x 149 Program Maintenance and Program Design 166
Contents 14.10 Conclusion 167
Exercise 14 167

Fundamental Programming Operations

I5 Sorting T169
I5.1 The Concept of Sorting 169

152 Sorting Techniques 169

{53 The Bubble Sort 169

154 Example Program 15.] ' 170

15.5 Conclusion 175
Exercise 15 175

16 Searching 178
16.1 The Concept of Searching 178

16.2 Searching Techniques 178

16.3 Sequential Search 178

164 Binary Search 179

16.5 Example Program (6.1 179

16.6 Conclusion 183
Exercise 16 183

{7 Merging ' 184
17.} The Concept of Merging 184

17.2 A Merging Technique 184

17.3 Example Program | 7.1 i85

17.4 Merging and Sorting 188

17.5 Conclusion 188
Exercise 17 188

Programming Fundamental Data Structures

‘18 Stacks . 190
18.1 Properties of a Stack 190

18.2 Representing a Stack in Basic 190

183 Example Program 8.1 190

184 Some Applications of Stacks 195

185 Conclusion 195
Exercise |18) 196

19 Queues 198
19.1 Properties of a Queue 198

19.2 Representing a Queue in Basic 198

19.3 Exampie Program 19.1 198

19.4 Some Applitations of Queues 204

19.5 Conclusion 205
Exercise 19 205

20 Lists 207
20.1 Properties of a List 207

20.2 Representing a List in Basic 207

xi
Contents

203
204
20.5

Example Program 20.1
Some Applications of Lists
Conclusion

Exercise 20

2]l Trees

211
212
213
214
215

Properties of a Tree
Representing a Tree in Basic
Example Program 21.1
Some Applications of Trees
Conclusion

Exercise 21

Programming Applications
22 Commercial Data Processing

22.1
222
223
224

The Nature and Scope of Commercial Data Processing
Accounting

Example Program 22.1

Conclusion

Exercise 22

23 Interactive Programs

23.1 Characteristics of Interactive Programs
23.2 Basic - an Interactive Language
233 Example Program 23.1
234 Conclusion

Exercise 23

24 Graphics
24.1 Machine Dependence of Graphics Facilities
242 The Cathode Ray Canvas
243 The Basic Brushstrokes
244 Clear Screen
245 Write Character to Screen
246 Read Character from Screen
24.7 - Example Program 24.1
248 Example Program 24.2
249 Interactive Graphics
24.10 Conclusion
Exercise 24

25 Critical Path Analysis

25.1
252
253
254
255
256
257
258

The Context of Critical Path Analysis
Activities and Events

Networks

Early and Late Event Times

The Critical Path

Calculating Early and Late Event Times
Example Program 25.1

€onclusion

Exercise 25

208
220
22|
221

224
224
224
224
232
232
233

235
235
236
237
251
251

254
254
254

264
264

266
266
266
268
268
269
270
270
276

293

xii
Contents

26

27

28

29

30

Numerical Analysis

26.1
26.2

263
264
265
266
267
268
269

Techniques of Numerical Analysis

Approximate Solutions to Equations: The Transposition
Method

Example Program 26. |

Gauss's Method for Solving Sumultaneous Equations
Example Program 26.2

Numerical Integration

Example Program 26.3

Using Numerical Analysis

Conclusion

Exercise 26

Simulation

27.1
272
27.3
274
27.5
276

Simulation — Making a Model
The Modelling Process
Desirable Features of a Model
A Population Model

Example Program 27.1
Conclusion

Exercise 27

Syntax Analysis

28.1
28.2
283
284
285
28.6
287
28.8

Approaches to Syntax Analysis

Areas of Syntax Analysis

Number Recognition — a State Table

Example Program 28.1

Syntax of Arithmetic Expressions - a Precedence Table
Example Program 28.2

Methods of Top-down Syntax Analysis

Conclusion ™.
Exer’cxse 28

““
N

Simulating a Model Comphte .-

A Simple Model Com‘pute:_ —'the SMC

29.1
- 292 SMCRegister Layout
29.3 SMC Machine Language
294 Example SMC Machine Language Program
295 SMCinstruction Cycle -
29.6 Example Program 29.1
297 Assembly Language
298 Example SMC Assembly Language Program
299 AnAssembler
29.10 Conclusion
Exercise 29
Project Suggestions
30.F Some General Guidelines
30.2 Project |: A Statistics Package
30.3 Project 2: File Processing
304 Project 3: A Data Enquiry System
305 Project 4: Heat Flow Systems

295
295
295

296
302
303
307
309
313
314
314

317
37
37
38
318
320
322
323

326
326
326
327
328
335
337
347
348
349

351
351
351
353
354
354
354
369
370
370
371
371

373
373
374
375
376
376

xiii
Contents

30.6 Project 5: Projectiles

30.7 Project 6: A Railway Junction Signalling System
308 Project 7: Can't Stop the Music

309 Project 8: Economic Models

30.10 Project 9: Genetics

30.11 Project 10: An Ecosystem

30.12 Sources of Further Information

Revision Exercise
Basic Summary
Glossary of Terms
Teachers’ notes

Index

378
379

382
383

385

387
390
392
397
424

Introduction

The aim of this book is to provide a broad, thorough grounding in high leve!
language computer programming, using Basic language as a medium. The
emphasis is on concepts, skills and techniques of programming, rather than on
details of the language.

Although this book is intended for use in advanced computing courses, it
assumes no previous knowledge of programming or Basic language, and, apart
from two specialised chapters towards the end of the book, requires no more
than a common sense level of mathematics. For those with some experience in
programming, it presents a fresh look at the subject, in considerably more depth
than before.

The book aims to assist in the development of a number of skills, notably:

® asystematic approach to a programming task;

® an ability to analyse a task in terms of programming concepts, techniques
and available computing facilities;

® an ability to design and write programs of a high standard;

® a knowledge of the concepts of program structure, and how to apply these
concepts;

® afamiliarity, through programming, with a number of fundamental concepts
of computing, such as data structures and operations like sorting and
merging;

® an ability to understand programs other people have written;

® an ability to carry out systematic tests on a program, and to identify and
correct errors;

® an ability to write adequate descriptions of the workings of programs.

Several more general skills are also involved, particularly the ability to think
clearly, and to write clear, concise English.

This may seem an ambitious and somewhat daunting set of objectives, but the
advantages of possessing such skills are considerable, and entirely worth the
effort involved in developing and maintaining them.

Programming reaches across the boundary between art and science. It is
creative, and yet restricted by a number of rules, standards and conventions.
Programming can perhaps best be summed up in the word discipline. Learning
to program is acquiring a mental discipline.

1.1 The Nature of Computer Programs

Before starting to indroduce some techniques of computer programming, in a
particular programming language, it is necessary to take a step back from the
subject, and examine computer programs in perspective. This exercise is as
important to those with some experience of programming as it is to new-
comers. .

The remainder of this chapter aims to clarify ideas about the nature of
computer programs. It establishes the environment in which a computer
program operates. This material relates to the rest of the book in a number of
ways. Several of the general ideas introduced here are expressed again, n a
more specific form, later in the book. This chapter should give a sense of
purpose and direction to much of the rest of the bcok. A chapter on program
design, in the middle of the book, follows fairly closely from the ideas introduced

5506444

2
Introduction

1.2 Views of Computer Programs

The next few sections examine three different views of computer programs,
namely the elementary view, the ‘toolsetting’ view and the ‘layer’ view. These
different views should give some insight into the rather elusive question — ‘What
is a computer program?”.

1.3 The Elementary View

The elementary view of a computer program is that it is a set of instructions to a
computer. This is rather like calling a house a collection of bricks. It is quite
correct, but inadequate for many purposes. just as a house is far more than a
collection of bricks, so is a computer program far more than a set of instructions
to a computer.

A rather misleading extension of the view is to regard a computer program as
a solution to a particular problem. This view originates in the use of computers
to solve mathematical problems. Such programs are ‘one-off jobs. Once they
have solved the problem, they are discarded. ft must be emphasised that in
today’s world of computing, such programs are extremely rare.

1.4 The Toolsetting View

The ‘toolsetting’ view of programs derives from a particular view of computers.
A computer is a general-purpose information processing machine. it may be
regarded as a tool, capable of performing a wide variety of operations. A
computer pragram ‘sets up’ the computer to perform certain precisely specified
operations. In other words, a program creates a particular kind of tool, which is
then used in certain ways. There are several important consequences of this
view of computer programs. These are discussed below.

A tool is not much use if it breaks down frequently. Consequently, a
computer program must be designed for repeated or continuous running. It
must be robust, able to withstand accidental or deliberate misuse.

The tool created by a computer program must be compatble with its
working environment. In other words, programs must be user-oriented. They
must be as easy as possible to use, and co-ordinate with other work the user
may be doing. In practice, most tasks performed by computers form part of
farger operations. Computer programs must be written with the requirements
of the larger operation in mind.

These requirements add up to the fact that computer programs must be
well-designed, having a sound structure. The question of program design is
discussed in some detail in Chapter | 1, but must be kept in mind from the start.

1.5 Thelayer View

Anocther view of computer programs is to regard them as a 'layer’ between the
hardware of a computer and the outside world. In this context, computer
programs are often called software. A useful computer consists of hardware
‘surrounded’ by a layer of software. See Figure 1.1.

An extension of this view is that some programs set up a computer as a tool
to run other programs. In consequence, the computer requires several layers of
software. The innermost layer interacts with the hardware of the computer,

DR
BEEIREY A BLELAE .
S e e

~

3
Introduction

Figure .1
Hardware and software

Figure 1.2
Layers of software

software

hardware

software

while the outer layer interacts with the user. Each layer of software is said to
support the layers outside it.
A very common pattern of layers of software is the following:

I the innermost layer is the operating system, which interacts directly with the
hardware, and manages the resources of the computer;

2 next there is a layer of language translation programs, which translate from a
language such as Basic to the machine language of the computer hardware;

3 the outermost layer is made up of applications programs, which set up the
computer to perform certain tasks.

This pattern is illustrated in Figure 1.2. Programs are discussed in this book from
all three of the above layers.

applications

ianguage

operating

hardware

translator

program

