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Preface

The aim of this book is to teach computer programming in a high level language,
using Basic as an example. The emphasis is on the concepts, skills and techniques
of programming, and on a disciplined approach to the task of designing and
writing programs. The book is tailored to meet the requirements of all the
examination boards in the United Kingdom which are offering Computer
Studies or Computing Science at Advanced level. Questions from past examina-
tion papers in these courses are included, as is a list of suggestions for projects
which are generally written as part of these courses.

This book has also been written with the requirements of the computing
industry in mind, particularly with regard to programming standards and
approaches to writing programs.

It is realised that a book of this nature is useful for a number of other
purposes. These include a reference book for teachers preparing to teach
programming at O or A-level, a textbook for students of equivalent courses at
colleges of further education, and a foundation book for students embarking on
computing courses at universities or polytechnics. It is also ideal for the owner of
a personal microcomputer who wants something more than a superficial
treatment of the subject.

The book is structured into five parts, each part comprising several chapters.
The first part introduces the features of Basic language, emphasising at the same
time the essential concepts of programming. ‘Frills’ of the language, which are
limited to certain types of computer, are deliberately avoided. Flow diagrams
are introduced to illustrate program structure, but are not regarded as an
essential part of designing and writing programs. Program examples and
exercises in this part are deliberately kept short and simple. The second part of
the book is independent of any programming language, and concerns an
approach to writing programs. It deals with the vital questions of program design
and program structure, as well as checking, documenting and maintaining
programs. Basic language programs are used to illustrate the techniques
discussed.

The third and fourth parts relate programming to the- wider theory of
computing. Part three describes the fundamental programming operations of

sorting, searching and merging, while part four deals with programming using

such data structures as stacks, queues and lists.

The final part of the book deals with a wide variety of programming
applications. By and large the applications are selff-contained, and include
graphics, simulation and syntax analysis. Although the majority of this book has a
low mathematical content, two chapters in this part are an exception to this rule.
They enable those with some knowledge of numerical analysis to combine it
with their skill in programming, but may be omitted without loss of continuity.

The book concludes with a list of project suggestions, a revision exercise, a
Basic summary and a glossary of programming terms.
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Introduction

The aim of this book is to provide a broad, thorough grounding in high leve!
language computer programming, using Basic language as a medium. The
emphasis is on concepts, skills and techniques of programming, rather than on
details of the language.

Although this book is intended for use in advanced computing courses, it
assumes no previous knowledge of programming or Basic language, and, apart
from two specialised chapters towards the end of the book, requires no more
than a common sense level of mathematics. For those with some experience in
programming, it presents a fresh look at the subject, in considerably more depth
than before.

The book aims to assist in the development of a number of skills, notably:

® asystematic approach to a programming task;

® an ability to analyse a task in terms of programming concepts, techniques
and available computing facilities;

® an ability to design and write programs of a high standard;

® a knowledge of the concepts of program structure, and how to apply these
concepts;

® afamiliarity, through programming, with a number of fundamental concepts
of computing, such as data structures and operations like sorting and
merging;

® an ability to understand programs other people have written;

® an ability to carry out systematic tests on a program, and to identify and
correct errors;

® an ability to write adequate descriptions of the workings of programs.

Several more general skills are also involved, particularly the ability to think
clearly, and to write clear, concise English.

This may seem an ambitious and somewhat daunting set of objectives, but the
advantages of possessing such skills are considerable, and entirely worth the
effort involved in developing and maintaining them.

Programming reaches across the boundary between art and science. It is
creative, and yet restricted by a number of rules, standards and conventions.
Programming can perhaps best be summed up in the word discipline. Learning
to program is acquiring a mental discipline.

1.1 The Nature of Computer Programs

Before starting to indroduce some techniques of computer programming, in a
particular programming language, it is necessary to take a step back from the
subject, and examine computer programs in perspective. This exercise is as
important to those with some experience of programming as it is to new-
comers. .

The remainder of this chapter aims to clarify ideas about the nature of
computer programs. It establishes the environment in which a computer
program operates. This material relates to the rest of the book in a number of
ways. Several of the general ideas introduced here are expressed again, n a
more specific form, later in the book. This chapter should give a sense of
purpose and direction to much of the rest of the bcok. A chapter on program
design, in the middle of the book, follows fairly closely from the ideas introduced

5506444



2
Introduction

1.2 Views of Computer Programs

The next few sections examine three different views of computer programs,
namely the elementary view, the ‘toolsetting’ view and the ‘layer’ view. These
different views should give some insight into the rather elusive question — ‘What
is a computer program?”.

1.3 The Elementary View

The elementary view of a computer program is that it is a set of instructions to a
computer. This is rather like calling a house a collection of bricks. It is quite
correct, but inadequate for many purposes. just as a house is far more than a
collection of bricks, so is a computer program far more than a set of instructions
to a computer.

A rather misleading extension of the view is to regard a computer program as
a solution to a particular problem. This view originates in the use of computers
to solve mathematical problems. Such programs are ‘one-off jobs. Once they
have solved the problem, they are discarded. ft must be emphasised that in
today’s world of computing, such programs are extremely rare.

1.4 The Toolsetting View

The ‘toolsetting’ view of programs derives from a particular view of computers.
A computer is a general-purpose information processing machine. it may be
regarded as a tool, capable of performing a wide variety of operations. A
computer pragram ‘sets up’ the computer to perform certain precisely specified
operations. In other words, a program creates a particular kind of tool, which is
then used in certain ways. There are several important consequences of this
view of computer programs. These are discussed below.

A tool is not much use if it breaks down frequently. Consequently, a
computer program must be designed for repeated or continuous running. It
must be robust, able to withstand accidental or deliberate misuse.

The tool created by a computer program must be compatble with its
working environment. In other words, programs must be user-oriented. They
must be as easy as possible to use, and co-ordinate with other work the user
may be doing. In practice, most tasks performed by computers form part of
farger operations. Computer programs must be written with the requirements
of the larger operation in mind.

These requirements add up to the fact that computer programs must be
well-designed, having a sound structure. The question of program design is
discussed in some detail in Chapter | 1, but must be kept in mind from the start.

1.5 Thelayer View

Anocther view of computer programs is to regard them as a 'layer’ between the
hardware of a computer and the outside world. In this context, computer
programs are often called software. A useful computer consists of hardware
‘surrounded’ by a layer of software. See Figure 1.1.

An extension of this view is that some programs set up a computer as a tool
to run other programs. In consequence, the computer requires several layers of
software. The innermost layer interacts with the hardware of the computer,
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3
Introduction

Figure .1
Hardware and software

Figure 1.2
Layers of software

software

hardware

software

while the outer layer interacts with the user. Each layer of software is said to
support the layers outside it.
A very common pattern of layers of software is the following:

I the innermost layer is the operating system, which interacts directly with the
hardware, and manages the resources of the computer;

2 next there is a layer of language translation programs, which translate from a
language such as Basic to the machine language of the computer hardware;

3 the outermost layer is made up of applications programs, which set up the
computer to perform certain tasks.

This pattern is illustrated in Figure 1.2. Programs are discussed in this book from
all three of the above layers.

applications

ianguage

operating

hardware

translator

program




