

STPUGTUHED
PROBLEM
SOLVING
WITH
PASCAL

Lawrence J. I\/Iazlack

Information Systems-—
University of Cincinnati

Holt, Rinehart and Winston

New York Chidago San Francisco Philadelphia' ~ Montreal
Toronto London Sydney Tokyo Mexico City .
Rio de Janeiro Madrid .

The photograph for the cover is courtesy of Chromatics, Inc.

Copyright © 1983 by CBS College Publishing
All rights reserved.
Address correspondence to: 383 Madison Avenue, New York, NY 10017

Library of Congress Cataloging in Publication Data

Mazlack, Lawrence J.
Structured problem solving with Pascal.

Includes index.

1. PASCAL (Computer program language) 2. Structured
programming. 1. Title.
QA76.73.P2M36 1983 001.64'24 82-21245
ISBN-0-03-060153-3

Printed in the United States of America
Published simultaneously in Canada
3456 016 987654321

CBS COLLEGE PUBLISHING
Holt, Rinehart and Winston
The Dryden Press

Saunders College Publishing

|

A computer language is a tool that can be used for solving many different types of
problems. Computer languages are used to communicate with the computer. The
language that is used influences the structure of the design of the problem’s computer
solution. There are a variety of different computer languages. Languages are different
because of what they are designed to do, how they go about doing it, and how difficult
they are to use.

The structure and form of a computer language have a great deal to do with
how a problem is solved on a computer. Some languages encourage programming
styles that create programs that are easier to design, implement, and modify. Pascal
has been designed to help people learn how to program in the best possible style.

When people first started to use computers, the best method of using them to
solve problems was unknown. More and more has been learned about solving
problems with the aid of a computer. Recently, a powerful way of using computers to
solve problems has been developed. This better way addresses how a problem is to be
analyzed before it is written in a computer language and how the problem should be
described to the machine. This powerful way of problem analysis is known as
top-down analysis. The better way of programming that has been developed is known
as structured programming. This book addresses the technique developed of top-
down problem solution design and the structured use of a computer programming
language.

Computer languages may be divided into “low” and “high” level langauges. A
low level language requires the programmer to be very concerned with precisely how
a given computer goes about solving or executing a program. A high level language is
intended to resemble human communication forms. A high level language
approaches either a “natural” language such as English (“story like”) or a mathematic-
al language that has the form of a set of mathematical statements. Consequently, the
use of a low level language results in a program which has been developed in terms of
the machine being used, whereas a high level language results in a program which has
been developed in terms of the problem being solved.

The advantage of using a high level language is that the problem solver can
spend more time on how to go about solving a problem and less time on the
mechanical details of how the computer executes a given data manipulation. A
greater freedom from concern with mechanical details usually allows the problem
solver (the programmer) to resolve many more information processing problems in a
given time.

There are many high level languages available. This book describes the

xii PREFACE

essential elements of Pascal, a high level language. Pascal was originally introduced
by Niklaus Wirth in the early seventies as a first language for students with no
programming experience. It is now widely available on both large and small compu-
ters. It has the capacity to easily manipulate arithmetic, character, and boolean
values. Pascal has significant data description facilities that allow the development of
useful data structures. However, more important than its considerable manipulative
capability is that the problem solution method can be reflected in the program’s
structure. Pascal has a variety of powerful “structured” control facilities and useful
data structures.

The design of Pascal makes it an ideal tool for writing structured programs.
Structured programs generally are simpler in form and are more easily reasoned
about. The structured programming technique has been found to have both theoretical
and practical advantages. The theoretical advantage in using structured programming
is that it produces programs that are closer to being provably correct than any other
programming technique.

The practical advantage in structured programming is that the structure of the
programs produced is usually simpler and can reflect a top-down/problem solution
analysis. Top-down analysis is a progressive problem subdivision analysis technique.
This technique produces solutions that are more understandable and allow greater
control over errors.

Pascal was designed by one man, Niklaus Wirth. For a period of time, there
was no agreed upon standard description of Pascal. Wirth’s book (K. Jensen and N.
Wirth, Pascal User Manual and Report, 2nd ed., Springer-Verlag, New York, 1974)
served both as the best description of the goals of Pascal and as a description of what
should be in the Pascal language. Several professional groups worked together to
develop a standard description of Pascal that all compiler implementations should
conform to. The last result of this was ANSI X3J9 “Second Draft Proposal ISO/DP
7185.1.” This is available in Pascal News, No. 20, December 1980. In 1982, this
version became the international standard and is what is referred to as “standard”
Pascal in this book.

OF PARTICULAR INTEREST TO THE INSTRUCTOR

This text is oriented towards solving problems that are concerned with handling
general collections of data as opposed to problems of a highly mathematical nature.
The programming examples have been kept as simple as possible. This focuses
attention on what the Pascal program statements are to be doing instead of on the
design of the problems that are being solved. The formation of data into groups
known as records will be addressed.

The examples and problems in the text require only simple computational
skills. Specifically, problems requiring any scientific knowledge or background have
been avoided. A few of the problems at the end of the chapters come from scientific or
engineering origins; however, the computations required do not include complex

-

PREFACE xiii

equations or background knowledge not provided in the problem statement.

The presentation of the material in the text has been modularized to reduce the
need for serial presentation. The shaded box at the start of each section indicates what
other sections are suggested as background. This allows the order in which the
material is learned to be different than the sequence chosen by the author. Also, some
topics can be de-emphasised while others can be eliminated.

The sequence of topics will probably be most satisfactory to a person who is
very comfortable with the concepts of top-down analysis and programming. A person
who is primarily interested in Pascal as a language, with only a developing interest in
the top-down process, may well prefer a different topic order. For example, the first
topic in this book that aids in program organization and control is subprograms
(Chapter 6, PROCEDURE and FUNCTION Fundamentals). Subprograms are cov-
ered before any other control structure (such as iteration or selection). This is
somewhat different than the sequence that has been common in the past. Although it
is felt that subprograms should be used early, users of this book are not constrained to
do so. They can just delay covering the contents of Chapter 6, which introduces
subprograms, until just before Chapter 12, which expands the discussion of Chapter
6. Likewise, some people may be more comfortable covering selection (IF, CASE)
before iteration (WHILE, REPEAT-UNTIL, FOR). This can be done easily. Also,
the topics can be interchanged or delayed since the examples in most of the chapters
of the book do not require a complete knowledge of the preceding chapters. In much
the same manner, most sections within a chapter do not require that all the previous
material in the chapter be covered before a particular section is covered. To aid in
course design, the prequisite background required for each section is indicated in the
shaded box at the start of each section.

The Pascal standard specifies a set of characters that can be used to construct a
Pascal program. The standard also describes a set of alternate characters that can be
used for the special purpose symbols. (Appendix C describes the standard and
alternate character sets along with character sets available for various computer
systems.) As few computer systems are capable of printing the complete Pascal
standard character set, virtually all programs written in Pascal that are to run on
existing computing systems must use some combination of standard and alternate
characters. (Some relatively popular computer systems cannot represent all the
necessary characters using a combination of standard and alternate characters.) This
book uses the combination of standard and alternate character sets that can be
displayed by machines using the EBCDIC representation. Many Pascal implementa-
tions for computer systems not using EBCDIC either also use this representation for
their character set or will accept all of the alternate characters as valid input.
Whatever character set your computer uses, this book can be used with it as long as
your Pascal compiler conforms to the Pascal standard.

Lawrence J. Mazlack

Preface

INTRODUCTION

1.1 The Parts of a Computer
1.2 Computer Systems
1.3 Using a Computer to Solve Problems
1.3.1 The Role of Algorithms
1.3.2 The Role of Programs
1.4 Programming Languages
1.4.1 Programming Language Syntax and Semantics
1.4.2 High and Low Level Languages
1.4.3 General and Special Purpose Languages
How a Program Gets Executed
An Overview of Computer Careers and Problem Solving

[G G —
oNO O,

Questions

PROBLEM SOLVING BY TOP-DOWN ANALYSIS

2.1 Top-Down Analysis
2.1.1 Graphic Representation of Top-Down Analysis
2.1.2 Outline Form

2.2 Program Planning

2.3 Use of Pseudo-Code
2.3.1 Pseudo-Code or Outline of a Problem’s

Solution Design

2.3.2 Column-by-Column Development of Pseudo-Code
2.3.3 Indented Pseudo-Code Format

2.4 An Overview of Structured Programming

2.5 An Overview of Program Documentation

2.6 Questions

2.7 Problems

BASIC ELEMENTS OF A PROGRAM

3.1 Data
3.1.1 Scalar Data Types
3.2 Names

Organizing Collections of Data: Data ltems, Records, Files

x,

ONOODO NP HLW—= =

10
12
14

15

16
16
20
21
22

23
24
26
27
29
30
30

31

31
32
37

vi

3.3

34

3.5
3.6

3.7

3.2.1 Identifiers

3.2.2 User Identifiers

Variables

3.3.1 The Role of Variables
3.3.2 The Need to Declare Variables
3.3.3 Declaring Variables

3.3.4 Meaningful Variable Names
Restricted Names

3.4.1 Reserved Words

3.4.2 Standard ldentifiers
Constants

Structure of a Pascal Program
3.6.1 Program Heading

3.6.2 Declaration Section

3.6.3 Executable Section

3.6.4 Comments

3.6.5 Complete Program Shell
Questions

4 BASIC INPUT AND OUTPUT

4.1

4.2

43
44

5 FUNDAMENTALS OF ACTING ON VALUES

5.1

5.2

5.3
5.4
5.5

input

41.1 READ
4.1.2 READLN
4.1.3 End of File
4.1.4 End of Line
Output

421 WRITE
422 WRITELN
Questions
Problems

Assignment

5.1.1 Assignment of Constant Values
5.1.2 Assignment of Variable Values
Arithmetic Operators

5.2.1 Integer Operators

5.2.2 REAL Operators

5.2.3 Mixing REAL and INTEGER Values

Relational Operators
Boolean Operators
Unary Operators

CONTENTS

37
37
38
38
38
39
40
41
42
42
43
44
44
45
46
48
48
50

51

52
52
57
59
60
61
61
64
65
69

7

72
73
73
74
75
76
77
77
78
79

CONTENTS

5.6
5.7
5.8

Expressions
Questions
Problems

6 PROCEDURE AND FUNCTION FUNDAMENTALS

6.1

6.2

6.3

6.4
6.5

Uses for PROCEDUREs and FUNCTIONs

6.1.1 Grouping Things Together

6.1.2 Standard or Commonly Done Things

6.1.3 Things Done More Than Once

6.1.4 Subprograms

PROCEDURESs

6.2.1 Using PROCEDURESs for Segmentation

6.2.2 Replacing Multiple Occurrences of the Same
Statements

6.2.3 Using PROCEDURESs as Stubs

FUNCTIONs

6.3.1 Using FUNCTIONSs for Segmentation

6.3.2 Replacing Muitipie Occurrences of the Same
Statements

Questions

Problems

7 CONTROL STRUCTURES: COMPOUNDING,
DECISIONS, REPETITION

7.1
7.2
73

7.4
7.5

BEGIN-END
Decision Expressions
Repetitive Control

7.3.1 WHILE

7.3.2 REPEAT-UNTIL
7.3.3 FOR
Questions

Problems

8 CONTROL STRUCTURES: SELECTION

8.1

8.2

8.3
8.4

IF-THEN-ELSE

8.1.1 IF-THEN

8.1.2 IF-THEN-ELSE

8.1.3 IF Controlled Groups
Directed Execution of Statements
8.2.1 CASE

8.22 GOTO

Questions

Problems

vii

80
82
83

89

90
90
91
92
93
93
95

97
99
101
103

105
111
112

117

119
120
121
122
128
134
138
141

151

151
1562
152
165
157
157
161
166
166

viii

10

11

12

CONTENTS

MULTIPLE CONTROL STRUCTURES 171
9.1 Multiple Condition Control 172
9.2 Nested Control Structures 175
9.3 Questions 179
9.4 Problems 180
ADDITIONAL DATA DEFINITIONS:
RESTRICTION, ENUMERATION, AND SETS 191
10.1 Programmer Defined Restrictions 192
10.1.1 Range of Values 192
10.1.2 Enumerated Data Values 193
10.2 Sets 198
10.2.1 Set Definition 198
10.2.2 Operations on Sets 200
10.2.3 Set Comparisons 203
10.2.4 Set Membership 203
10.3 Questions 206
10.4 Problems 206
STRUCTURED DATA TYPES 209
11.1 ARRAYs 209
11.1.1 Single Dimension ARRAYs 211
11.1.2 Data Directed Storage 217
11.1.3 Multiple Dimension ARRAYs 220
11.2 Character Strings 223
11.3 RECORDs 228
11.3.1 Defining RECORDs 229
11.3.2 Files 231
11.4 Record Variants 235
11.5 Questions 237
11.6 Problems 238
PROCEDURES AND FUNCTIONS 255
12.1 Scope 256
12.2 Communicating with Subprograms 262
12.2.1 Value Parameters 264
12.2.2 Variable Parameters 266
12.3 Using Subprograms with Control Structures 268
12.4 Subprograms Invoking Other Subprograms 270
12.4.1 From within Another Subprogram 271
12.4.2 Subprogram identifiers as Parameters 273

12.5 Recursion 275

o

CONTENTS

13

14

15

12.6 Questions
12.7 Problems

DYNAMIC DATA STRUCTURES

13.1 Defining Dynamic Structures
13.1.1 Pointers
13.1.2 Controlling Space
13.1.3 Pointer References
13.2 Linked Lists
13.2.1 Creating a List
13.2.2 Writing a Simple List
13.2.3 Deleting a Component
13.2.4 Inserting Components

13.2.5 Simultaneously Referring to Elements

of Different Components
13.3 Simple Rings
13.4 Trees
13.5 Questions
13.6 Problems

FILES

14.1 File Definition
14.2 Sequential Access of Files
14.2.1 EOF
14.2.2 REWRITE
1423 PUT and WRITE
14.2.4 RESET
1425 GET
143 Creating a File
14.3.1 Creating a New File
14.3.2 Merging Files
14.4 Text Files
14.4.1 Line Control
1442 Text File Input/Output
14.5 Questions
14.6 Problems

STRUCTURED WALKTHROUGHS

15.1 Advantages

15.2 When a Walkthrough Should Be Done
15.2.1 Specification Walkthrough

15.2.2 Design WaIkthronjgh

’/& o PRy {(/

T R

1

276
277

289

290
291
292
294
295
295
299
299
299

303
305
308
312
313

317

318
319
321
321
322
323
323
324
324
326
329
329
330
331
331

333

333
334
334
335

15.3

154
15.5
15.6
15.7
15.8

15.2.3 Program Walkthrough
16.2.4 Test Walkthrough

Roles in a Walkthrough

15.3.1 Presenter

15.3.2 Coordinator

15.3.3 Scribe

156.3.4 Maintenance Representative
15.3.5 Standards Leader

156.3.6 Customer Representative
15.3.7 Others

Activities before a Walkthrough
Activities during the Walkthrough
Activities after a Walkthrough
General Guidelines

Questions

APPENDIXES

OTMUOO®>»

Syntax Diagrams

Standard Pascal Terms
Character Sets

Lexical Structure

Waterloo Pascal

Statement Layout Conventions
Differences Between Standard Pascal and UCSD Pascal

Glossary

Index

CONTENTS

335
335
335
336
336
336
336
336
337
337
337
337
338
339
339

341
348
352
355
359
366
372

377

381

Chapter 1

~ Objectives |
- Provide a general introduction to computers and to problem 301"“‘8 on
i computers ' ~ ‘

Suggested Background

oy pn()r knowledge of computers and the role that they play in the world} -

~ would be helpful, it is not necessary. This chapter presents a general
, dlseussxon of the topics included in it. The reader is encouraged to
~ seek additional information in any of the numerous ffftrodnctory books

to computers that are avaﬂable

Computers are a part of today’s world. Almost every day, they affect us by
what they do. They can do some things very well and are inadequate for other tasks.
The things that they can do well are often things that are simple for people to do. The
computer’s strength is that it can do simple things faster, cheaper, and sometimes
more reliably than people can.

1.1 THE PARTS OF A COMPUTER

Objectives
~ Identify the ﬁve basic funcuons of a computer and relate these func-
~‘ uons to the major parts of a computer , .

Suggested Background

/ None

Before a person learns to drive a car, there is a need to have a general idea of
the pieces of a car and their functions. For example, the ideas needed include the
knowledge that: the engine makes the care move, the brakes stop it, the horn makes a
warning noise, the steering wheel is used to change direction, etc. Likewise, before

2 INTRODUCTION

trying to use a computer, a person should have a general idea of what makes up a
computer.

There are big computers, small computers, and those that are in between.
They all have some things in common. All computers are machines. The type of
computers that this book will help a person to use to solve problems is a digital
computer. The term digital means that the machine manipulates digits or symbols to
perform its assigned tasks.

All digital computers can perform five functions: (a) read, (b) write, (c) store
data, (d) manipulate data (including arithmetic), and (e) control their own actions and
make decisions based on previously supplied instructions. The instructions that tell
the computer what to do are called a program. How these functions are related is
indicated in the diagram shown in Figure 1.1. In the diagram, the direction of the
arrows indicates the direction(s) in which data can be passed.

memory

input control — output

manipulation

Figure 1.1 Basic parts of a computer.

Precisely how the machine accomplishes its functions is not the concern of
this book. This is much the same as a person who knows that flipping a light switch
causes the light to come on. How electricity is generated and delivered has little to do
with knowing how to turn on a light. The person only need understand the general
idea that electricity flows along wires and that a switch can control whether or not the
electricity will make the light bulb glow.

The smallest computers perform only one task at a time. Larger computers
often do several different things at the same time. For example, one program may be
in the process of being read in, another may be manipulating data, and a third may be
completed with the results in the output process. When several things are happening
at the same time, what is happening needs to be controlled. Control is the job of a
powerful program called an operating system. An operating system’s job is to allocate
resources (input devices, output devices, etc.) and to schedule tasks (when to read,

1.2 COMPUTER SYSTEMS 3

what program to run, etc.). The operating system program decides when a Pascal
program can do its work.

The operating system program to control the computer handling your Pascal
program has already been developed. The course instructor will provide information
on how to use it so that Pascal programs can be processed by the computer.

1.2 COMPUTER SYSTEMS

Objectwe ,
Provide a general introduction to the hardware and software compo-
'nents of a computer system

f Sugge ed Background .
1.1 should be done before this sectxon Thxs section is in-
. tended toprovtde a general summary of the topics presented init. The
. reader i encouraged to seek supplemental mformatlon :

As was discussed in Section 1.1, a computer performs several different
functions. Usually a single device does all of these functions. However, modern
computers usually are made up of several separate pieces. The pieces are connected
together by bundles of wires called cables. There may be many different combina-
tions of pieces that can be used together. When several pieces are connected together,
the result is usually called a computer system. Sometimes people call the collection of
equipment that is used the hardware and the programs that are used the software.

The hardware that makes up a computer system can include a large variety of
input and output devices. Most students will submit their data to a computer using
either punched cards or a terminal and the results will be displayed either on a
terminal or on a printer. Other input devices include those that read characters
optically or magnetically. Computers can also accept data input from devices that
read paper tape, magnetic tape, or magnetic disk.

Magnetic tape or disk is used as auxiliary storage. Programs and data can be
stored temporarily on tape or disk by a computer program during the running of a
program or for future use. Data and programs are also often put on tape, and
sometimes disk, for transportation from one location to another.

As computer systems grow larger, more and more devices are collected
together. Also, external communication capabilities are added to allow people who
are not close to the computer to use the computer’s facilities. Terminals sometimes
communicate with a computer using telephone lines. Making all of the pieces work
together is the job of the system software. In large computer systems, a considerable
portion of what a computer does is to supervise and control its own activities. (The
program called the operating system effects this control.)

4 INTRODUCTION

1.3 USING A COMPUTER TO SOLVE PROBLEMS

A computer is an extremely powerful device. It can do just about any
calculation or series of calculations that are necessary to solve a problem or task. But
it can perform tasks only if it is told precisely and exactly what to do. The process of
telling a computer what to do can be divided into planning what to do and then
specifying the steps necessary to accomplish the plan. The machine must be in-
structed in its tasks in a way that the computer can use. If the computer was a person,
we would say that it has to clearly and unambiguously “understand” what it is to do.

1.3.1 The Role of Algorithms

In order to understand what it is that is to be done, the solution to a problem
first must be designed and stated in an algorithm. We all use algorithms. An
algorithm is simply a plan of how to solve a problem. A more precise way of defining
an algorithm is to say that it is a complete, unambiguous procedure for solving a
specified procedure in a finite number of steps. An algorithm should be

(1) unambiguous

(2) precisely defined

(3) finite

(4) effective

(5) specified as a series of steps

1.3 USING A COMPUTER TO SOLVE PROBLEMS 5

1.3.2 The Role of Programs

r:Objectuve / o
Connect tbe use of a program wnh an algonthm

Suggestad Background
- Section 1. 31

A program is the way that a problem solver tells a computer the steps that it is
to follow to solve a problem. A program is a detailed and explicit set of instructions
for accomplishing an algorithmically stated problem. The program has to be stated in
a language that the computer can use.

The purpose of a program is to solve a problem. A program that does not work
and solve its problem is worthless. Additional goals of a program may include finding
the solution in the cheapest and fastest manner possible, but cost and speed are
unimportant if the problem has not been solved properly. (It is often the case that the
problem is misunderstood by the problem solver and that an algorithm and program
are designed to solve the wrong problem. The use of structured walkthroughs,
discussed in Chapter 15, helps clarify the understanding of what is to be accom-
plished.)

1.4 PROGRAMMING LANGUAGES

;,;Objectwes e ' o ,
~ Discuss the purpose of a pmgrammmg language how programmmg

~ languages are descnbed and the variations in programmmg lan-
guages : ,

~ Suggested Background ,;
. ,Secaons 3 5131, md132

A programming language is used to communicate with a computer. As with
any language, there are rules on how a language statement should be formed. The
rules for constructing a computer language statement are stricter than those concern-
ing human language statements. For example, people might be instructed to write
their ages on a piece of paper in a variety of different valid ways:

