~ Samson Abramsky (Ed.)

Typed Lambda Calculi
and Applications
5th International Conference, TLCA 2001

Krakow, Poland, May 2001
Proceedings

q—
q—
-
N
Vg
O
=
—

&)
”@}?} Springer
4

Samson Abramsky (Ed.)

Typed Lambda Calculi
and Applications

5th International Conference, TLCA 2001
Krakéw, Poland, May 2-5, 2001
Proceedings

®)? Springer

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editor

Samson Abramsky

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD
E-mail: Samson.Abramsky @comlab.ox.ac.uk

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Typed lambda caiculi and applications : 5th international conference ;
proceedings / TLCA 2001, Krakéw, Poland, May 2 - 5, 2001. Samson
Abramsky (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Hong
Kong ; London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 2001
(Lecture notes in computer science ; Vol. 2044)
ISBN 3-540-41960-8

CR Subject Classification (1998): F.4.1, F3,D.1.1,D.3

ISSN 0302-9743
ISBN 3-540-41960-8 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP Berlin, Stefan Sossna
Printed on acid-free paper SPIN 10782565 06/3142 543210

Preface

This volume contains the proceedings of the Fifth International Conference on
Typed Lambda Calculi and Applications, held in Krakéw, Poland on May 2-5,
2001. It contains the abstracts of the four invited lectures, plus 28 contributed
papers. These were selected from a total of 55 submissions. The standard was
high, and selection was difficult.

The conference programme also featured an evening lecture by Roger Hindley,
on “The early days of combinators and lambda”.

I would like to express my gratitude to the members of the Program Com-
mittee and the Organizing Committee for all their dedication and hard work. I
would also like to thank the many referees who assisted in the selection process.
Finally, the support of Jagiellonian University, Warsaw University, and the U.S.
Office of Naval Research is gratefully acknowledged.

The study of typed lambda calculi continues to expand and develop, and
touches on many of the key foundational issues in computer science. This volume
bears witness to its continuing vitality.

February 2001 Samson Abramsky

Program Committee

S. Abramsky (Oxford) (Chair)
P.-L. Curien (Paris)

P. Dybjer (Gothenburg)

T. Ehrhard (Marseille)

M. Hasegawa (Kyoto)

D. Leivant (Bloomington)

S. Ronchi della Roceca (Turin)
H. Schwichtenberg (Munich)
P. Scott (Ottawa)

J. Tiuryn (Warsaw)

F. Honsell (Udine)

Organizing Committee

M. Zaionc (Krakéw)
P. Urzyczyn (Warsaw)

Referees

Peter Aczel

Klaus Aehlig

Fabio Allesi
Thorsten Altenkirch
Andrea Asperti
Patrick Baillot
Franco Barbanera
Gilles Barthe

Nick Benton
Stefano Berardi
Ulrich Berger

Gavin Bierman
Rick Blute

Viviana Bono
Wilfried Buchholz
Juliusz Chroboczek
Alberto Ciaffaglione
Robin Cockett

Loic Colson
Adriana Compagnoni
Mario Coppo
Thierry Coquand
Ferrucio Damiani
Vincent Danos
Ewen Denney
Mariangola Dezani
Roberto Di Cosmo
Pietro Di Gianantonio

J. Wielgut-Walczak (Krakéw)

Roy Dyckhoff
Andrzej Filinski
Bernd Finkbeiner
Gianluca Franco
Herman Geuvers
Paola Giannini
Jeremy Gibbons
Bruno Guillaume
Esfandiar Haghverdi
Peter Hancock

Russ Harmer

Ryu Hasegawa
Michael Hedberg
Peter Moller Heergard
Hugo Herbelin
Roger Hindley
Martin Hofmann
Doug Howe

Radha Jagadeesan
Patrik Jansson
Felix Joachimski
Jan Johannsen
Jean-Baptiste Joinet
Thierry Joly

Delia Kesner
Yoshiki Kinoshita
Josva Kleist
Jean-Louis Krivine

Francois Lamarche
Olivier Laurent
Marina Lenisa
Ugo de’Liguoro
Luigi Liquori

John Longley
Zhaohui Luo
Harry Mairson
Jean-Yves Marion
Simone Martini
Ralph Matthes
Paul-Andre Mellies
Marino Miculan
Larry Moss

Koji Nakazawa
Susumu Nishimura
Vincent Padovani
Luca Paolini
Michel Parigot

C. Paulin-Mohring
Dusko Pavlovic
Adolfo Piperno
Jaco van der Pol
Jeff Polakow
Randy Pollack
Laurent Regnier
Eike Ritter
Kristoffer Rose

VIII Organization

Jiri Rosicky
Luca Roversi
Martin Ruckert
Don Sanella
Ivan Scagnetto
Alan Schmitt
Robert Seely
Jonathan Seldin

Harold Simmons
Thomas Streicher
Eijiro Sumii
Makoto Takeyama
Robert Tennent
Wolfgang Thomas
Christian Urban
Pawel Urzyczyn

Tarmo Uustalu
Betti Venneri
Roel de Vrijer
Stan Wainer
Benjamin Werner

Table of Contents

Invited Lectures

Many Happy Returns. 1
Olivier Danvy

From Bounded Arithmetic to Memory Management: Use of Type Theory
to Capture Complexity Classes and Space Behaviour 2
Martin Hofmann

Definability of Total Objects in PCF and Related Calculi............... 4

Dag Normann

Categorical Semantics of Control........ oL 6
Peter Selinger

Contributed Papers

Representations of First Order Function Types as Terminal Coalgebras ... 8
Thorsten Altenkirch

A Finitary Subsystem of the Polymorphic A-Caleulus, 22
Thorsten Altenkirch, Thierry Coquand

Sequentiality and the m-Calculus 29
Martin Berger, Kohei Honda, Nobuko Yoshida

Logical Properties of Name Restriction 46
Luca Cardelli, Andrew D. Gordon

Subtyping Recursive Games i 61
Juliusz Chroboczek

Typing Lambda Terms in Elementary Logic with Linear Constraints 76
Paolo Coppola, Simone Martini

Ramified Recurrence with Dependent Types........................... 91
Norman Danner

Game Semantics for the Pure Lazy A\-Calculus 106
Pietro Di Gianantonio

Reductions, Intersection Types, and Explicit Substitutions 121
Dan Dougherty, Pierre Lescanne

X Table of Contents

The Stratified Foundations as a Theory Modulo 136
Gilles Dowek

Normalization by Evaluation for the Computational Lambda-Calculus 151
Andrzej Filinski

Induction Is Not Derivable in Second Order Dependent Type Theory 166
Herman Geuvers

Strong Normalization of Classical Natural Deduction with Disjunction 182
Philippe de Groote

Partially Additive Categories and Fully Complete Models of Linear Logic . 197
Esfandiar Haghverdi

Distinguishing Data Structures and Functions: The Constructor Calculus

and Functorial Types 217
C. Barry Jay

The Finitely Generated Types of the A-Calculus 240
Thierry Joly

Deciding Monadic Theories of Hyperalgebraic Trees 253

Teodor Knapik, Damian Niwiriski, Pawet Urzyczyn

A Deconstruction of Non-deterministic Classical Cut Elimination 268
James Laird

A Token Machine for Full Geometry of Interaction 283
Olivier Laurent

Second-Order Pre-logical Relations and Representation Independence. 298
Hans Leif$

Characterizing Convergent Terms in Object Calculi via Intersection Types 315
Ugo de’Liguoro

Parigot’s Second Order Au-Calculus and Inductive Types 329
Ralph Matthes

The Implicit Calculus of Constructions: Extending Pure Type Systems
with an Intersection Type Binder and Subtyping 344
Alexandre Miquel

Evolving Games and Essential Nets for Affine Polymorphism 360
Andrzej S. Murawski, C.-H. Luke Ong

Retracts in Simple Types i 376
Vincent Padovani

Table of Contents XI

Parallel Implementation Models for the A-Calculus Using the Geometry of
Interaction 385
Jorge Sousa Pinto

The Complexity of 3-Reduction in Low Orders 400
Aleksy Schubert

Strong Normalisation for a Gentzen-like Cut-Elimination Procedure 415
Christian Urban

Author Index ... 431

Many Happy Returns

Olivier Danvy

BRICS*
Department of Computer Science
University of Aarhus
Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark
E-mail: danvy@brics.dk
Home page: http://www.brics.dk/ danvy

Abstract. Continuations occur in many areas of computer science:
logic, proof theory, formal semantics, programming-language design and
implementation, and programming. Like the wheel, continuations have
been discovered and rediscovered many times, independently. In pro-
gramming languages, they represent of “the rest of a computation” as a
function, and proved particularly convenient to formalize control struc-
tures (sequence, gotos, exceptions, coroutines, backtracking, resump-
tions, etc.) and to reason about them. In the lambda-calculus, terms
can be transformed into “continuation-passing style” (CPS), and the
corresponding transformation over types can be interpreted as a double-
negation translation via the Curry-Howard isomorphism. In the compu-
tational lambda-calculus, they can simulate monads. In programming,
they provide functional accumulators.

Yet continuations are remarkably elusive. They can be explained in five
minutes, but grasping them seems to require a lifetime. Consequently
one often reacts to them to an extreme, either loving them (“to a man
with a hammer, the world looks like a nail”) or hating them (“too many
lambdas”).

In this talk, we will first review basic results about continuations, start-
ing with Plotkin's Indifference and Simulation theorems (evaluating a
CPS-transformed program yields the same result independently of the
evaluation order). Thus equipped, we will identify where continuations
arose and how they contributed to solving various problems in computer
science. We will conclude with the state of the art today, and present a
number of examples, including an illustration of how applying the contin-
uation of a procedure several times makes this procedure return several
times—hence the title of the talk.

* Basic Research in Computer Science (www.brics.dk), funded by the Danish National
Research Foundation.

S. Abramsky (Ed.): TLCA 2001, LNCS 2044, p. 1, 2001.
© Springer-Verlag Berlin Heidelberg 2001

From Bounded Arithmetic to Memory
Management: Use of Type Theory to Capture
Complexity Classes and Space Behaviour

Martin Hofmann

Laboratory for the Foundations of Computer Science
Division of Informatics, University of Edinburgh

Bounded arithmetic [3] is a subsystem of Peano arithmetic defining exactly
the polynomial time functions. As Godel’s system T corresponds to Peano arith-
metic Cook and Urquhart’s system PV, [4] corresponds to bounded arithmetic.
It is a type system with the property that all definable functions are polynomial
time computable.

PV, as a programming language for polynomial time is, however, unsatisfac-
tory in several ways. Firstly, it requires to maintain explicit size bounds on in-
termediate results and secondly, many obviously polynomial time algorithms do
not fit into the type system. The attempt to alleviate these restrictions has lead
to a sequence of new type systems capturing various complexity classes (PTIME,
PSPACE, EXPTIME, LINSPACE) without explicit reference to bounds. Among
them are Cook-Bellantoni’s [2] and Bellantoni-Niggl-Schwichtenberg’s systems of
safe recursion (1], tiered systems by Leivant and Marion {12,11], subsystems of
Girard’s linear logic [6,5], and various systems by myself [9,7,8].

The most recent work [10] has shown that one of these systems can be adapted
to allow for explicit memory management including in-place update while still
maintaining a functional semantics.

The talk will give a bird’s eye overview of the above-mentioned calculi and
then discuss in some more detail the recent applications to memory management.
This will include recent yet unpublished results about the expressive power of
higher-order linear functions and general recursion in the context of [10]. These
results suggests that the expressive power equals J, DTIME(2"™).

References

1. S. Bellantoni, K.-H. Niggl, and H. Schwichtenberg. Ramification, Modality, and
Linearity in Higher Type Recursion. Annals of Pure and Applied Logic. 2000. to
appear.

2. Stephen Bellantoni and Stephen Cook. New recursion-theoretic characterization
of the polytime functions. Computational Complexity, 2:97-110, 1992.

3. Samuel R. Buss. Bounded Arithmetic. Bibliopolis, 1986.

4. S. Cook and A. Urquhart. Functional interpretations of feasibly constructive arith-
metic. Annals of Pure and Applied Logic, 63:103-200, 1993.

5. J.-Y. Girard. Light Linear Logic. Information and Computation, 143, 1998.

6. J.-Y. Girard, A. Scedrov, and P. Scott. Bounded linear logic. Theoretical Computer
Science, 97(1):1-66, 1992.

S. Abramsky (Ed.): TLCA 2001, LNCS 2044, pp. 2-3, 2001.
(© Springer-Verlag Berlin Heidelberg 2001

10.

11.

12.

From Bounded Arithmetic to Memory Management 3

Martin Hofmann. Linear types and non size-increasing polynomial time computa-
tion. To appear in Theoretical Computer Science. See
www.dcs.ed.ac.uk/home/papers/icc.ps.gz for a draft. An extended abstract has
appeared under the same title in Proc. Symp. Logic in Comp. Sci. (LICS) 1999,
Trento, 2000.

. Martin Hofmann. Programming languages capturing complexity classes. SIGACT

News Logic Column, 9, 2000. 12 pp.

Martin Hofmann. Safe recursion with higher types and BCK-algebra. Annals of
Pure and Applied Logic, 104:113-166, 2000.

Martin Hofmann. A type system for bounded space and functional in-place up-
date. Nordic Journal of Computing, 2001. To appear, see

www.dcs . ed.ac.uk/home/mxh/papers/nordic.ps.gz for a draft. An extended ab-
stract has appeared in Programming Languages and Systems, G. Smolka, ed.,
Springer LNCS, 2000.

D. Leivant and J.-Y. Marion. Predicative Functional Recurrence and Poly-Space.
In Springer LNCS 1214: Proc. CAAP, 1997.

Daniel Leivant. Stratified Functional Programs and Computational Complexity.
In Proc. 20th IEEE Symp. on Principles of Programming Languages, 1993.

Definability of Total Objects in PCF and
Related Calculi

Dag Normann

Department of Mathematics
University of Oslo

We let PCF be Plotkin’s [8] calculus based on Scott’s {10,11] LCF, and
we consider the standard case with base types for the natural numbers and for
the Booleans. We consider the standard interpretation using algebraic domains.
Plotkin [8] showed that a finite object in general will not be definable, and
isolated two nondeterministic constants PAR and 3, such that each computable
object is definable in PCF + PAR + 3.

The first result to be discussed is

Theorem 1. If & is computable and hereditarily total, then there is a PCF
definable ¥ C & that is also total.

For details, see [4,5]

Escardé [1,2] extended PCF to R — PCF, adding base types for the reals
and the unit interval I, using continuous domains for the interpretation.
We investigate the hereditarily total objects and obtain

Theorem 2. The hereditarily total objects in the semantics for R — PCF posess
a natural equivalence relation, and the typed structure of equivalence classes can
be characterized in the category of limit spaces.

For details, see [6]

PAR is definable in R— PCF, but 3, is not. It is an open problem if Theorem
1 can be generalized to R — PCF.
We will discuss a partial solution of the problem in

Theorem 3. 3., is not uniformly R— PCF -definable from any hereditarily total
object.

Uniformly definable will mean that the object is definable by one term from each
element of the equivalence class.
For details, see [7]

The final result to be discussed is joint with Christian Rgrdam [9].
We will compare PCF with Kleene's classical approach from 1959. and see
that when we restrict ourselves to p-recursion in higher types of continuous
functionals, the differences are only cosmetical. Niggl [3] devised a calculus M¥
that essentially is

(PCF - Fixpoints) + PAR + p-operator.
Theorem 4. MY is strictly weaker than PCF + PAR.

S. Abramsky (Ed.): TLCA 2001, LNCS 2044, pp. 4-5, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Definability of Total Objects in PCF and Related Calculi 5

References

10.

11.

. Escardé, M. H., PCF extended with real numbers: a domain-theoretic approach

to higher-order exact number computation, Thesis, University of London, Imperial
College of Science, Technology and medicine (1996).

. Escardd, M. H., PCF exztended with real numbers, Theoretical Computer Science

162 (1) pp. 79 - 115 (1996).

. Niggl, K.-H., M* considered as a programming language, Annals of Pure and Ap-

plied Logic 99, pp. 73-92 (1999)

Normann, D., Computability over the partial continuous functionals, Journal of
Symbolic Logic 65, pp. 1133 - 1142, (2000)

Normann, D.,The Cook-Berger Problem. A Guide to the solutionIn Spreen, D.
(ed.): Electronic Notes in Theoretical Computer Science. 2000-10; 35 : 9
Normann, D., The continuous functionals of finite types over the reals, To appear
in Keimel, Zhang, Liu and Chen (eds.) Domains and Processes Proceedings of the
1st International Symposium on Domain Theory, Luwer Academic Publishers
Normann, D., Fract real number computations relative to hereditarily total func-
tionals, To appear in Theoretical Computer Science.

. Plotkin, G.,LCF considered as a programming language, Theoretical Computer

Science 5 (1977) pp. 223 - 255.

Rgrdam, C., A comparison of the simply typed lambda calculi M*“ and Lpa, Cand.
Scient. Thesis, Oslo (2000)

Scott, D. S., A theory of computable functionals of higher type, Unpublished notes,
University of Oxford, Oxford (1969).

Scott, D. S., A type-theoretical alternative to ISWIM, CUCH, OWHY, Theoretical
Computer Science 121 pp. 411 - 440 (1993).

Categorical Semantics of Control

Peter Selinger

Department of Computer Science
Stanford University

In this talk, I will describe the categorical semantics of Parigot’s Ap-calculus [7].
The Au-calculus is a proof-term calculus for classical logic, and at the same time
a functional programming language with control operators. It is equal in power
to Felleisen’s C operator [2,1], except that it allows both a call-by-name and call-
by-value semantics. The connection between classical logic and continuation-like
control operators was first observed by Griffin [4].

The categorical semantics of the Au-calculus has been studied by various
authors in the last few years [6,5,10]. Here, we give a semantics in terms of con-
trol categories, which combine a cartesian-closed structure with a premonoidal
structure in the sense of Power and Robinson [8]. The call-by-name Ap-calculus
(with disjunctions) is an internal language for control categories, in much the
same way the simply-typed lambda calculus is an internal language for cartesian-
closed categories. Moreover, the call-by-value Au-calculus is an internal language
for the dual class of co-control categories. As a corollary, one obtains a syntac-
tic duality result in the style of Filinski [3]: there exist syntactic translations
between call-by-name and call-by-value which are mutually inverse and which
preserve the operational semantics.

References

1. P. De Groote. On the relation between the Au-calculus and the syntactic theory
of sequential control. Springer LNCS 822, 1994.

2. M. Felleisen. The calculi of A, -conversion: A syntactic theory of control and state
in imperative higher order programming languages. PhD thesis, Indiana University,
1986.

3. A. Filinski. Declarative continuations and categorical duality. Master’s thesis,
DIKU, Computer Science Department, University of Copenhagen, Aug. 1989.
DIKU Report 89/11.

4. T. G. Griffin. A formulae-as-types notion of control. In POPL ’90: Proceedings of
the 17th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, 1990.

5. M. Hofmann and T. Streicher. Continuation models are universal for Au-calculus.
In Proceedings of the Twelfth Annual IEEE Symposium on Logic in Computer
Science, pages 387-397, 1997.

6. C-H. L. Ong. A semantic view of classical proofs: Type-theoretic, categorical,
and denotational characterizations. In Proceedings of the Eleventh Annual IEEE
Symposium on Logic in Computer Science, pages 230-241, 1996.

7. M. Parigot. Au-calculus: An algorithmic interpretation of classical natural deduc-
tion. In Proceedings of the International Conference on Logic Programming and
Automated Reasoning, St. Petersburg, Springer LNCS 624, pages 190-201, 1992.

S. Abramsky (Ed.): TLCA 2001, LNCS 2044, pp. 6-7, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Categorical Semantics of Control 7

8. J. Power and E. Robinson. Premonoidal categories and notions of computation.
Math. Struct. in Computer Science, 7(5):445-452, 1997.

9. P. Selinger. Control categories and duality: on the categorical semantics of the
lambda-mu calculus. Math. Struct. in Computer Science, 11(2), 2001. To appear.

10. H. Thielecke. Categorical Structure of Continuation Passing Style. PhD thesis,
University of Edinburgh, 1997.

Representations of First Order Function Types
as Terminal Coalgebras

Thorsten Altenkirch

School of Computer Science and Information Technology
University of Nottingham, UK
txa@cs.nott.ac.uk

Abstract. We show that function types which have only initial algebras
for regular functors in the domains, i.e. first order function types, can
be represented by terminal coalgebras for certain nested functors. The
representation exploits properties of w°P-limits and local w-colimits.

1 Introduction

The work presented here is inspired by discussions the author had some years
ago with Healfdene Goguen in Edinburgh on the question Can function types
be represented inductively? or maybe more appropriately: Can function types be
represented algebraically?.

In programming and type theory the universe of types can be divided as
follows:

— function types (cartesian closure)
— algebraic types

— inductive types (initial algebras)
— coinductive types (terminal coalgebras)

In programming the difference between inductive and coinductive types is often
obliterated because one is mainly interested in the collection of partial objects
of a certain type. Inspired by Occain’s razor it would be interesting if we could
explain one class of types by another. Here we try to reduce function types to
algebraic types.

The first simple observation is that function spaces can be eliminated using
products if the domain is finite. Here we show that function spaces 4 — B can
be eliminated using coinductive types if the domain A is defined inductively.
It is interesting to note that ordinary coinductive types are sufficient only for
functions over linear inductive types (i.e. where the signature functor has the
form T(X) = A; X X + Ap) but in general we need to construct functors defined
by terminal coalgebras in categories of endofunctors. Those correspond to nested
or nested datatypes which have been the subject of recent work [BM98,AR99,
Bla00}.

S. Abramsky (Ed.): TLCA 2001, LNCS 2044. pp. 8-21, 2001.
(© Springer-Verlag Berlin Heidelberg 2001

