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Preface

This volume contains the proceedings of the Fifth International Conference on
Typed Lambda Calculi and Applications, held in Krakéw, Poland on May 2-5,
2001. It contains the abstracts of the four invited lectures, plus 28 contributed
papers. These were selected from a total of 55 submissions. The standard was
high, and selection was difficult.

The conference programme also featured an evening lecture by Roger Hindley,
on “The early days of combinators and lambda”.

I would like to express my gratitude to the members of the Program Com-
mittee and the Organizing Committee for all their dedication and hard work. I
would also like to thank the many referees who assisted in the selection process.
Finally, the support of Jagiellonian University, Warsaw University, and the U.S.
Office of Naval Research is gratefully acknowledged.

The study of typed lambda calculi continues to expand and develop, and
touches on many of the key foundational issues in computer science. This volume
bears witness to its continuing vitality.

February 2001 Samson Abramsky
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Many Happy Returns

Olivier Danvy

BRICS*
Department of Computer Science
University of Aarhus
Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark
E-mail: danvy@brics.dk
Home page: http://www.brics.dk/ danvy

Abstract. Continuations occur in many areas of computer science:
logic, proof theory, formal semantics, programming-language design and
implementation, and programming. Like the wheel, continuations have
been discovered and rediscovered many times, independently. In pro-
gramming languages, they represent of “the rest of a computation” as a
function, and proved particularly convenient to formalize control struc-
tures (sequence, gotos, exceptions, coroutines, backtracking, resump-
tions, etc.) and to reason about them. In the lambda-calculus, terms
can be transformed into “continuation-passing style” (CPS), and the
corresponding transformation over types can be interpreted as a double-
negation translation via the Curry-Howard isomorphism. In the compu-
tational lambda-calculus, they can simulate monads. In programming,
they provide functional accumulators.

Yet continuations are remarkably elusive. They can be explained in five
minutes, but grasping them seems to require a lifetime. Consequently
one often reacts to them to an extreme, either loving them (“to a man
with a hammer, the world looks like a nail”) or hating them (“too many
lambdas”).

In this talk, we will first review basic results about continuations, start-
ing with Plotkin's Indifference and Simulation theorems (evaluating a
CPS-transformed program yields the same result independently of the
evaluation order). Thus equipped, we will identify where continuations
arose and how they contributed to solving various problems in computer
science. We will conclude with the state of the art today, and present a
number of examples, including an illustration of how applying the contin-
uation of a procedure several times makes this procedure return several
times—hence the title of the talk.

* Basic Research in Computer Science (www.brics.dk), funded by the Danish National
Research Foundation.

S. Abramsky (Ed.): TLCA 2001, LNCS 2044, p. 1, 2001.
© Springer-Verlag Berlin Heidelberg 2001



From Bounded Arithmetic to Memory
Management: Use of Type Theory to Capture
Complexity Classes and Space Behaviour

Martin Hofmann

Laboratory for the Foundations of Computer Science
Division of Informatics, University of Edinburgh

Bounded arithmetic [3] is a subsystem of Peano arithmetic defining exactly
the polynomial time functions. As Godel’s system T corresponds to Peano arith-
metic Cook and Urquhart’s system PV, [4] corresponds to bounded arithmetic.
It is a type system with the property that all definable functions are polynomial
time computable.

PV, as a programming language for polynomial time is, however, unsatisfac-
tory in several ways. Firstly, it requires to maintain explicit size bounds on in-
termediate results and secondly, many obviously polynomial time algorithms do
not fit into the type system. The attempt to alleviate these restrictions has lead
to a sequence of new type systems capturing various complexity classes (PTIME,
PSPACE, EXPTIME, LINSPACE) without explicit reference to bounds. Among
them are Cook-Bellantoni’s [2] and Bellantoni-Niggl-Schwichtenberg’s systems of
safe recursion (1], tiered systems by Leivant and Marion {12,11], subsystems of
Girard’s linear logic [6,5], and various systems by myself [9,7,8].

The most recent work [10] has shown that one of these systems can be adapted
to allow for explicit memory management including in-place update while still
maintaining a functional semantics.

The talk will give a bird’s eye overview of the above-mentioned calculi and
then discuss in some more detail the recent applications to memory management.
This will include recent yet unpublished results about the expressive power of
higher-order linear functions and general recursion in the context of [10]. These
results suggests that the expressive power equals J, DTIME(2"™).

References

1. S. Bellantoni, K.-H. Niggl, and H. Schwichtenberg. Ramification, Modality, and
Linearity in Higher Type Recursion. Annals of Pure and Applied Logic. 2000. to
appear.

2. Stephen Bellantoni and Stephen Cook. New recursion-theoretic characterization
of the polytime functions. Computational Complexity, 2:97-110, 1992.

3. Samuel R. Buss. Bounded Arithmetic. Bibliopolis, 1986.

4. S. Cook and A. Urquhart. Functional interpretations of feasibly constructive arith-
metic. Annals of Pure and Applied Logic, 63:103-200, 1993.

5. J.-Y. Girard. Light Linear Logic. Information and Computation, 143, 1998.

6. J.-Y. Girard, A. Scedrov, and P. Scott. Bounded linear logic. Theoretical Computer
Science, 97(1):1-66, 1992.
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Martin Hofmann. Linear types and non size-increasing polynomial time computa-
tion. To appear in Theoretical Computer Science. See
www.dcs.ed.ac.uk/home/papers/icc.ps.gz for a draft. An extended abstract has
appeared under the same title in Proc. Symp. Logic in Comp. Sci. (LICS) 1999,
Trento, 2000.

. Martin Hofmann. Programming languages capturing complexity classes. SIGACT

News Logic Column, 9, 2000. 12 pp.

Martin Hofmann. Safe recursion with higher types and BCK-algebra. Annals of
Pure and Applied Logic, 104:113-166, 2000.

Martin Hofmann. A type system for bounded space and functional in-place up-
date. Nordic Journal of Computing, 2001. To appear, see

www.dcs . ed.ac.uk/home/mxh/papers/nordic.ps.gz for a draft. An extended ab-
stract has appeared in Programming Languages and Systems, G. Smolka, ed.,
Springer LNCS, 2000.

D. Leivant and J.-Y. Marion. Predicative Functional Recurrence and Poly-Space.
In Springer LNCS 1214: Proc. CAAP, 1997.

Daniel Leivant. Stratified Functional Programs and Computational Complexity.
In Proc. 20th IEEE Symp. on Principles of Programming Languages, 1993.



Definability of Total Objects in PCF and
Related Calculi

Dag Normann

Department of Mathematics
University of Oslo

We let PCF be Plotkin’s [8] calculus based on Scott’s {10,11] LCF, and
we consider the standard case with base types for the natural numbers and for
the Booleans. We consider the standard interpretation using algebraic domains.
Plotkin [8] showed that a finite object in general will not be definable, and
isolated two nondeterministic constants PAR and 3, such that each computable
object is definable in PCF + PAR + 3.

The first result to be discussed is

Theorem 1. If & is computable and hereditarily total, then there is a PCF
definable ¥ C & that is also total.

For details, see [4,5]

Escardé [1,2] extended PCF to R — PCF, adding base types for the reals
and the unit interval I, using continuous domains for the interpretation.
We investigate the hereditarily total objects and obtain

Theorem 2. The hereditarily total objects in the semantics for R — PCF posess
a natural equivalence relation, and the typed structure of equivalence classes can
be characterized in the category of limit spaces.

For details, see [6]

PAR is definable in R— PCF, but 3, is not. It is an open problem if Theorem
1 can be generalized to R — PCF.
We will discuss a partial solution of the problem in

Theorem 3. 3., is not uniformly R— PCF -definable from any hereditarily total
object.

Uniformly definable will mean that the object is definable by one term from each
element of the equivalence class.
For details, see [7]

The final result to be discussed is joint with Christian Rgrdam [9].
We will compare PCF with Kleene's classical approach from 1959. and see
that when we restrict ourselves to p-recursion in higher types of continuous
functionals, the differences are only cosmetical. Niggl [3] devised a calculus M¥
that essentially is

(PCF - Fixpoints) + PAR + p-operator.
Theorem 4. MY is strictly weaker than PCF + PAR.

S. Abramsky (Ed.): TLCA 2001, LNCS 2044, pp. 4-5, 2001.
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Categorical Semantics of Control

Peter Selinger

Department of Computer Science
Stanford University

In this talk, I will describe the categorical semantics of Parigot’s Ap-calculus [7].
The Au-calculus is a proof-term calculus for classical logic, and at the same time
a functional programming language with control operators. It is equal in power
to Felleisen’s C operator [2,1], except that it allows both a call-by-name and call-
by-value semantics. The connection between classical logic and continuation-like
control operators was first observed by Griffin [4].

The categorical semantics of the Au-calculus has been studied by various
authors in the last few years [6,5,10]. Here, we give a semantics in terms of con-
trol categories, which combine a cartesian-closed structure with a premonoidal
structure in the sense of Power and Robinson [8]. The call-by-name Ap-calculus
(with disjunctions) is an internal language for control categories, in much the
same way the simply-typed lambda calculus is an internal language for cartesian-
closed categories. Moreover, the call-by-value Au-calculus is an internal language
for the dual class of co-control categories. As a corollary, one obtains a syntac-
tic duality result in the style of Filinski [3]: there exist syntactic translations
between call-by-name and call-by-value which are mutually inverse and which
preserve the operational semantics.

References

1. P. De Groote. On the relation between the Au-calculus and the syntactic theory
of sequential control. Springer LNCS 822, 1994.

2. M. Felleisen. The calculi of A, -conversion: A syntactic theory of control and state
in imperative higher order programming languages. PhD thesis, Indiana University,
1986.

3. A. Filinski. Declarative continuations and categorical duality. Master’s thesis,
DIKU, Computer Science Department, University of Copenhagen, Aug. 1989.
DIKU Report 89/11.

4. T. G. Griffin. A formulae-as-types notion of control. In POPL ’90: Proceedings of
the 17th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, 1990.

5. M. Hofmann and T. Streicher. Continuation models are universal for Au-calculus.
In Proceedings of the Twelfth Annual IEEE Symposium on Logic in Computer
Science, pages 387-397, 1997.

6. C-H. L. Ong. A semantic view of classical proofs: Type-theoretic, categorical,
and denotational characterizations. In Proceedings of the Eleventh Annual IEEE
Symposium on Logic in Computer Science, pages 230-241, 1996.

7. M. Parigot. Au-calculus: An algorithmic interpretation of classical natural deduc-
tion. In Proceedings of the International Conference on Logic Programming and
Automated Reasoning, St. Petersburg, Springer LNCS 624, pages 190-201, 1992.
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8. J. Power and E. Robinson. Premonoidal categories and notions of computation.
Math. Struct. in Computer Science, 7(5):445-452, 1997.

9. P. Selinger. Control categories and duality: on the categorical semantics of the
lambda-mu calculus. Math. Struct. in Computer Science, 11(2), 2001. To appear.

10. H. Thielecke. Categorical Structure of Continuation Passing Style. PhD thesis,
University of Edinburgh, 1997.



Representations of First Order Function Types
as Terminal Coalgebras

Thorsten Altenkirch

School of Computer Science and Information Technology
University of Nottingham, UK
txa@cs.nott.ac.uk

Abstract. We show that function types which have only initial algebras
for regular functors in the domains, i.e. first order function types, can
be represented by terminal coalgebras for certain nested functors. The
representation exploits properties of w°P-limits and local w-colimits.

1 Introduction

The work presented here is inspired by discussions the author had some years
ago with Healfdene Goguen in Edinburgh on the question Can function types
be represented inductively? or maybe more appropriately: Can function types be
represented algebraically?.

In programming and type theory the universe of types can be divided as
follows:

— function types (cartesian closure)
— algebraic types

— inductive types (initial algebras)
— coinductive types (terminal coalgebras)

In programming the difference between inductive and coinductive types is often
obliterated because one is mainly interested in the collection of partial objects
of a certain type. Inspired by Occain’s razor it would be interesting if we could
explain one class of types by another. Here we try to reduce function types to
algebraic types.

The first simple observation is that function spaces can be eliminated using
products if the domain is finite. Here we show that function spaces 4 — B can
be eliminated using coinductive types if the domain A is defined inductively.
It is interesting to note that ordinary coinductive types are sufficient only for
functions over linear inductive types (i.e. where the signature functor has the
form T(X) = A; X X + Ap) but in general we need to construct functors defined
by terminal coalgebras in categories of endofunctors. Those correspond to nested
or nested datatypes which have been the subject of recent work [BM98,AR99,
Bla00}.
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