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PREFACE

Prospective authors of a technical book are faced with a dilemma. If their
subject is well established—the theory of elasticity, for example—then it
is likely that they have been preceded by someone who has taken far more
pains to produce a book than they possibly could. On the other hand, if
they have not been so pre-empted, it may well be because their subject is
still evolving. Their “snapshot” of a subject in its infancy might then rap-
idly become out of date.

Fracture mechanics is a subject that has not yet fully matured. Yet, it
has existed long enough, and its practical applications are important
enough, that a great deal of information is already available. Neverthe-
less, we wrote this book believing that fracture mechanics is currently at
a unique stage. Enough research has been performed to provide a solid
foundation upon which future progress will build. At the same time, soci-
etal dictates for optimum uses of energy and materials are increasingly
forcing structural integrity assessments to be made in the more realistic
way afforded by a fracture mechanics approach. Accordingly, a book
offering its readers a unifying treatment of the subject for a wide variety
of structural materials and application areas is one that should be of
value, even though much work remains to be done.

While a number of excellent books on fracture mechanics have already
been written—many by our friends and colleagues—we do not feel these
offer the particular perspective we have sought in this book. We have
addressed the subject from the point of view of applied mechanics. At the
same time we feel that some fundamental aspects have not been made as
clear in the existing books as they perhaps should be for the newcomer to
this field. We hope that we can also improve on this aspect for our
readers.

To those not well acquainted with it, the subject of fracture mechanics
may appear to be rather exotic and mysterious. But it should not. Any
reader who understands the basic concepts of stress and strain, as might
be acquired in an undergraduate course on the strength of materials,
should find little conceptual difficulty with it. In essence, fracture
mechanics circumvents the difficulty arising from the presence of a sharp
crack in a stress analysis problem (where there would be an infinite stress,
and fracture, under any load) by providing a parameter that characterizes
the propensity of the crack to extend. This parameter, which can be gen-
erally referred to as the crack extension force, can be dalculated knowing
the stress-strain behavior of the material, the crack/structure geometry,
and the boundary conditions. A critical value of the crack extension force
is generally taken as a property of the material. This property, which can
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be inferred from simple tests, constitutes the only additional information
needed.

Fracture mechanics, be it for elastic-brittle, ductile, time-dependent, or
heterogeneous materials, is simply based on equating the calculated crack
extension force for a cracked structure to the fracture property for the
structural material. The result is an explicit relation for crack extension
for prescribed applied load, crack size, component dimensions, and mate-
rial. Applying this method in any particular circumstance may not be
obvious. This book would not be necessary if it were. But the basic
approach is both simple and widely applicable.

We now state more definitely what we mean by the term “fracture
mechanics.” In common with most researchers in the field, we define the
term in the following way: Fracture mechanics is an engineering disci-
pline that quantifies the conditions under which a load-bearing body can
fail due to the enlargement of a dominant crack contained in that body.
This definition is obviously quite general. Accordingly, what it does not
include is perhaps equal in importance to what it does.

First, this definition does not restrict the size, shape, or location of the
crack. Nor does it limit the direction or the rate at which it enlarges.
Hence, relatively slow crack growth rates as in stress corrosion and
fatigue are included along with dynamic processes such as rapid “brittle”
crack propagation. Second, no constraint is placed on the constitutive
relation obeyed by the cracked body. It follows that elastodynamic, elas-
tic-plastic, and viscoplastic continuum material behavior, along with het-
erogeneous and atomistically viewed materials, are equally admissible
with the conventional (and most widely used) linear elastic continuum
view. Third, the causation of crack extension is not specified in our def-
inition. Mechanical and thermal stresses that vary arbitrarily in time
along with environmental agents, separately or in combination, can be
considered. As a final point the definition leaves the nature of failure itself
unspecified. Thus, any condition from the mere appearance of a detect-
able crack to catastrophic fracture can be considered within the domain
of fracture mechanics.

What should follow from the definition just given is the vacuousness
of statements that imply that fracture mechanics does not work in some
given area. As an example, not too many years ago many people con-
cerned with the use of fiber composites for aircraft structures undoubt-
edly would have subscribed to the sentiment expressed by one of them:
“Fracture mechanics will work only for a composite structure that some-
one has attacked with a hatchet.” The interpretation of such a remark is
this: linear elastic fracture mechanics techniques developed for high
strength metals are not directly applicable to a composite unless a
through-wall crack exists that is large in comparison to the scale of the
micromechanical failure events that precede fracture. Linear elastic frac-
ture mechanics, to be sure, is by far the most highly developed and widely
applied version of fracture mechanics. But, it is just that—a specializa-
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tion of the general subject that must not be considered as synonymous
with the subject as a whole. Thus, when “fracture mechanics doesn’t
work,” it is very likely because the methodology has been applied at too
simple a level.

A key feature of any fracture mechanics definition is the explicit
requirement of a dominant crack. This is the essential difference between
fracture mechanics and other kinds of structural analysis. That cracks can
and do appear in every type of structure is, of course, the raison d’etre of
fracture mechanics. But, the requirement that at least one identifiable
crack exist can be troublesome. For example, fracture mechanics cannot
predict failure in a simple tensile test. No engineering structure can be
assessed via fracture mechanics unless at least one crack is either
observed (or postulated) to exist in that structure.

Another drawback to fracture mechanics is a subtle one that even many
people with long experience in the field do not always recognize. Fracture
property values cannot be directly measured. Such values can only be
inferred—via the interposition of some assumed analysis model—from
quantities that can be experimentally determined. The reason is that
there is no instrument that can be made to provide fracture property val-
ues for all materials in all testing conditions to the extent that a strain
gage measures a change in a length or a thermocouple measures a change
in temperature. To “measure” a material fracture property, the theoreti-
cal crack driving force is calculated for the crack length and load level at
the observed point of crack extension. The fracture property is just the
critical value of this crack driving force. While this is true even under
linear elastic conditions, there is little difficulty in that regime. But, in
nonlinear and dynamic fracture mechanics, serious consequences can
result from not recognizing that the fracture “property” can be strongly
affected by the analysis method used with the measurement process.

The foregoing requirements suggest a constraint on the definition of
fracture mechanics. To qualify as a true fracture mechanics approach, the
measured fracture properties must be broadly applicable and not
restricted only to the special conditions in which the characterizing exper-
iments are performed. Approaches in which a specific structural compo-
nent is closely simulated are therefore not in this spirit. Even though such
tests are performed on cracked materials, if a basic fracture parameter is
not correctly involved, the results are limited to an interpolative func-
tion; that is, reliable predictions can only be made for conditions that
correspond to those in which the experiments were performed.

The hallmark of a true fracture mechanics approach is that it has an
extrapolative function. It should be possible to obtain reliable predictions
even for conditions that differ significantly from those in which crack
growth measurements were made. In accord with this constraint, fracture
mechanics makes possible the use of small-scale laboratory tests (e.g.,
compact tension specimens) to provide material crack growth and frac-
ture property data for integrity assessments of large-scale structures. Of
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course, a properly founded analysis approach provides the critical link
needed to make such a transition possible.

Our basic definition of fracture mechanics may also help readers of this
book to appreciate just how broad the subject of fracture mechanics is.
Far from being a specialized subject, it underlies all structural analysis
and materials science. No structural material is exempt from a defected
condition, and, if it could not fail because of such defects, it would be
pointless to analyze it in any other way. Consequently, each and every
structural component is, or could be, a candidate for treatment by frac-
ture mechanics. While all applications obviously do not now receive such
scrutiny, it is clear from present trends that the years to come will see
fracture mechanics assessments become more and more commonplace.

We have sought to satisfy two general groups of readers. In the first
group are those who may have had little or no association with fracture
mechanics, but possess a background in stress analysis and/or materials
science equivalent to that acquired in an undergraduate engineering pro-
gram. The second group contains those who have worked, perhaps exten-
sively, in a particular aspect of fracture, but who have not been exposed
to the variety of application areas covered. Our presentation can be lik-
ened to a paraphrase of a remark on the nature of science attributed to
the French mathematician Poincaré: a technical book is built of facts the
way a house is built of bricks, but an accumulation of facts is no more a
book than a pile of bricks is a house. That is, we have sought to provide
more than just a haphazard collection of analysis approaches and results.
We want instead to show the essential unity of fracture mechanics and
the basic commonality of its many specializations. Simply put, our goal
is to demonstrate principles rather than recount details. Thus, we want
our book to be judged on whether it enables its readers to understand
fracture mechanics, not on its worth as a source of up-to-the-minute data
and problem-solving techniques.

This book is partly based on lecture notes for a two-quarter course on
fracture mechanics taught in the Department of Engineering Mechanics
at the Ohio State University. The introductory course for advanced
undergraduate and beginning graduate students is confined primarily to
linear elastic or small-scale yielding fracture mechanics. It draws upon
material from Chapters 1 through 3, supplemented with selected topics
from Chapter 5. The more advanced topics in Chapters 2 and 4 through
7 form the subject matter for the second course. Since experience has
demonstrated that the book contains more material than can conceivably
be covered in a two-quarter course, the book should also be suitable for
use in a two-semester course. Chapter 1 evolved from notes developed
for short courses designed to introduce fracture mechanics to practicing
engineers interested in structural integrity and nondestructive evaluation.

In common with most engineering-oriented subjects, fracture mechan-
ics practitioners have had to face the problems arising from the use of
different sets of units. We are convinced that the SI system will eventually
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become universally accepted and, accordingly, have tried to use it to the
extent possible in this book. However, a great amount of data has been
collected and reported in English units. We do not feel obliged to convert
these data, and, in fact, because the English system is still far from obso-
lete, feel that we would not be providing a service in so doing. Dual sys-
tems are tedious and tend to become much more of a hindrance than a
help to understanding. We have provided a conversion chart at the front
of the book to assist the reader with a need to have particular results in a
system other than the one in which we have reported it.

In writing this book we have been able to draw upon a vast amount of
published material. This is of course not an unmixed blessing. There are
simply too many worthwhile reports of research activities in fracture
mechanics for us to report on but a fraction of them. For example, the
two primary journals exclusively devoted to the subject—The Interna-
tional Journal of Fracture and Engineering Fracture Mechanics—con-
tained some 3100 pages between them in 1983. Added to this are perhaps
two dozen other technical journals that regularly contain papers on some
aspect of fracture mechanics together with countless volumes of confer-
ence proceedings and other compilations. Accordingly, we make no pre-
tense of completeness in covering the subject. We believe that the approx-
imately 800 references we have cited will provide ready access to the
remaining literature in any particular specialized area. Furthermore, we
have selected references to reflect the main contributors to the subject,
thereby identifying the people from whom important work in each area
of interest to our readers can be expected in the future. In so doing, we
have provided citations that are readily obtainable in English and would
be available in most technical libraries. Our apologies to those whose
major contributions we have unintentionally (and inevitably) over-
looked, and to those whose claims of historical priority—particularly in
non-English-language papers—we have thereby violated.

We have found it possible to embark upon the preparation of this book
because of the wide diversity of the research we have been involved in.
For this, both of us must primarily credit our associations with the Bat-
telle Memorial Institute. Each of us could also compile a long list of col-
leagues and co-workers who have in some way contributed to extending
our knowledge of fracture mechanics. That we have not named them
individually does not, we hope, suggest that our debt to these associations
is a small one. It is not. There are, however, four individuals whose influ-
ence on the first author have been such that he would be extremely remiss
not to acknowledge them specifically. These are Mr. Eugene Eschbach,
who guided his first professional work while both were employed by the
General Electric Company in Richland, Washington; the late Professor
Norman Goodier, his teacher, advisor and friend at Stanford University;
Dr. George Hahn, his co-worker for many years at Battelle’s Columbus
Laboratories; and the one foremost in his affections, his wife, Jean. The
second author would like to acknowledge his friend and mentor, the late
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Professor Ivor K. Mclvor. He also owes a debt of gratitude to his wife,
Joyce, for not only proofreading the manuscript but also for her forbear-
ance and love in general. Finally, we are indebted to Sherry Galford,
Norma Hunter, and Claudia Riser who cheerfully and painstakingly
typed the many versions of the manuscript, to Victor Holmes for prepar-
ing many of the figures, to John Merkle for his thorough critique of the
draft version of the book, and, finally, to Louisa Ronan for helping in so
many ways.

San Antonio, Texas M. F. K.
Columbus, Ohio C.H. P.
January 1984
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1
INTRODUCTION AND OVERVIEW

The existence of crack-like flaws cannot be precluded in any engineering
structure. At the same time, increasing demands for energy and material
conservation are dictating that structures be designed with smaller safety
margins. Consequently, accurate quantitative estimates of the flaw tolerance
of structures is increasingly becoming of direct concern for the prevention of
fracture in load-bearing components of all kinds. This has not always been so.
Prudent design procedures that avoided large stress concentrations—
together with immediate repair or retirement from service of components that
exhibited cracks—have been reasonably effective in preventing catastrophic
failures. However, two important factors have now emerged to negate this
traditional strategy.

First, improved nondestructive evaluation (NDE) procedures have enabled
defects to be found that would have gone unnoticed earlier. Second, the
presence of a crack-like defect does not necessarily mean that a structural
component is at (or even near) the end of its useful service life. The cost of the
repair or replacement of a flawed component can therefore be balanced
against the possibility that continued service could lead to a failure. The new
engineering concept known as damage tolerance has been developed to
provide quantitative guidance for this purpose. It, in turn, is largely based
upon the technology of fracture mechanics. While not the only ingredient of
structural integrity assessments, as this book will make clear, it plays a central
role.

Concern for fracture has surely existed back to antiquity. While much of this
concern is unrecorded, some evidence of scholarly study that substantially
predates our times does exist; see for examples Gordon’s books (1.1). As
described in Timoshenko’s history of the strength of materials (1.2)—see also
Irwin’s review paper (1.3)—da Vinci performed experiments to determine the
strength of iron wires in the fifteenth century. He found an inverse relationship
between the wire length and the breaking load for constant diameter wires.
Because this result would otherwise imply that strength is dependent upon the
wire length, it can be surmised that the presence of cracks dictated the fracture
stress; that is, the larger the volume of material tested, the more likely it is that
a large crack exists. Considering the wire quality available at that time, this is
highly plausible. Nevertheless, little of a quantitative nature could be done
with this possibility. Fracture theories based on crack extension require the
mathematical concepts of stress and strain that were not forthcoming until
given by Cauchy and the other great French mathematician/engineers of the
nineteenth century (1.4).



