

COMMUNICATING WITH
DATABASES IN
NATURAL LANGUAGE

M. WALLACE, BA, MA, MSc, PhD

COMMUNICATING WITH
DATABASES IN
NATURAL LANGUAGE

M. WALLACE, BA, MA, MSc, PhD
Software Designer/Implementor
International Computers Limited
Reading, Berkshire, England

0000767

A

ELLIS HORWOOD LIMITED
Publishers : Chichester
Halsted Press: a division of

JOHN WILEY & SONS
New York - Chichester - Brisbane - Toronto

First published in 1984 by
ELLIS HORWOOD LIMITED .
Market Cross House, Cooper Street, Chichester, West Sussex, PO19 1EB, England

The publisher’s colophon is reproduced from James Gillison’s drawing of the
ancient Market Cross, Chichester.

Distributors:

Australia, New Zealand, South-east Asia:
Jacaranda-Wiley Ltd., Jacaranda Press,

JOHN WILEY & SONS INC.,

G.P.O. Box 859, Brisbane, Queensland 40001, Austraiia
Canada: i .

JOHN WILEY & SONS CANADA LIMITED

22 Worcester Road, Rexdale, Ontario, Canada.
Europe, Africa:

JOHN WILEY & SONS LIMITED

Baffins Lane, Chichester, West Sussex, England.
North and South America and the rest of the world:
Halsted Press: a division of

JOHN WILEY & SONS

605 Third Avenue, New York, N.Y. 10016, U.S.A.

© 1984 M. Wallace/Ellis Horwood Limited

British Library.Cataloguing in Publication Data
Wallace, Mafk

Communicating with databases in natural language. —
(EHiz Horwood series in artificial intelligence)

1. Prolog (Computer program language)

I. Title

001.64'24 QA76.73.P7

Library of Congress Card No.
ISBN 0-85312-639-9 {Eliis Horwood Limited)
ISBN 0-470-20105-3 (Halsted Press)

Typeset by Ellis Horwood Limited
Printed in Great Britain by R.J. Acford, Chichester

COPYRIGHT NOTICE —

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the permission of Ellis Horwood Limited, Market Cross
House, Cooper Street, Chichester, West Sussex, England.

Table of Contents

Preface 9

Chapter 1 INTRODUCTION

Natural language processing 11
Communicating with databases 12

Making query languages more habitable 14
NL system architecture 15

The scope of the implementation 16

ok wN -

Chapter 2 NATURAL LANGUAGE ENQUIRY
1. Introduction 17

The parser 21

Extensibility of the grammar 27

The English dictionary 29

Spelling correction 32

Context 33

The data mcde! 38

Query language 40

DBMS independence 43

Topic independence 43

Pragmatics 44

SoomNoapreN

— 2

6 TABLE OF CONTENTS

12. General queries 47
13. Referring back to the user 48
14. QFROC 48

Chapter 3 FORMALISING NATURAL LANGUAGE
1. The difference between natural language and formal languages 50
2. QPROC objectives 51

Chapter 4 D&QS -
1. Arriving at D&Qs 56
2. Semantic concepts 66
3. Converting D&Qs to simplified RDBMS
‘List Commands” 71

Chapter 5 SEMANTICS
1. Introduction 82
The sentence, or clause 84
Data modelling 94
Noun phrases 97
The verb “tobe” 106

o b L

Chapter 6 IMPLEMENTATION
1. Introduction 108
2. Functionality 108
3. QPROC design 113

Chapter 7 CURRENT DEVELOPMENTS IN NATURAL
LANGUAGE ACCESS TO DATABASES

Introduction 121

Current systems 121

Mapping natural language onto current databases 122

Developments 124

Networking 126

e -

Appendix 1 APILOT IMPLEMENTATION 128

Appendix 2 SPECIFICATION OF D&QS 133

TABLE OF CONTENTS

Appendix 3 A PROLOG PROGRAM FOR CONVERTING D&QS TO
LIST COMMANDS 143

Appendix 4 THE ELECTION AND COPSE DATABASES 150
Appendix 5 INTRODUCTION TO PROLOG 156

References 163

Index 167

Preface

This book is intended 1o give the reader an insight into the construction of a
natural language front end.

The first chapter introduces natural language systems in general. but the
remainder of the book concentrates on natural language (NL) front ends to data-
bases. The second chapter attempts to bring out the essential issues by examining
a variety of solutions implemented in existing NL front ends. The next four
chapters focus in on a particular implementation, QPROC, in order to give the
reader the more detailed understanding that cannot be gleaned from general
surveys. In Chapter 4 it is presumed that the reader has some knowledge of logic,
although ali the logical constructs are fuily illustrated with examples. In Chapter
S QPROC(’s NL analvsis is described but the linguistic concepts are introduced in
non-technical 1erms. A section on data moedelling assumes that the reader has
some prior knowledge of the relational data model.

The last iwo chapters contain practical discussion - in Chapter 6 about the
implementation of QPROC, in Chapter 7 about the current status and near term
developinents of NL front ends.

The whole book is spiced with examples of PROLC S programming to
illustrate the implementation of QPROC and the suitability of PROLOG for the
task. The book does not claim to be an introduction to PROLOG, but there is an
appendix designed to bring the reader to a point where he can understand the
example PROLOG programs, if such a text is not available to him.

That the book appeared at all can be traced back to Terry Smith and Roger
Pikett of the BBC. and to Professor David Barron of Southampton University
and Andrew Huti of ICL. who agreed 1o the joint sponsorship of a Ph.D. on a:

10 PREFACE

natural language database interface. I am very grateful to the SERC, ICL and the
BBC for the funding of three years of research under David Barron’s bolstering
supervision; to Andrew Hutt who whirled me back to ICL where I have been
pointed in the right direction, supported and encouraged by David Horth and
Vince We:i; and to Ken Whitehead and Professor John Campbell who have read
the book and who have both shown me a number of improvements which [have
included in their entirety.

My initial interest in natural language understanding was sparked off and
stoked by Alan Bond, at Queen Mary College, London. Throughout my research
1 have been continually encouraged and helped by my parents whose confidence
in me will never be justified by anything I produce but was inevitably mos*
inspiring!

Finally, to Julie who spent hours decoding my writing, typing and retyping
it, I acknowledge a tremendous debt which cannot properly be expressed in this
preface.

Introduction

1. NATURAL LANGUAGE PROCESSING

Computers never get jokes. In fact they can cope with so few of the functions of
natural language that nobody has ever dared claim to have written a real natural
language understanding system. What this book describes, and what perhaps one
hundred groups of people are working on all over the world, are merely systems
to deal with useful subsets of natural language. These groups are intev®yted in
. natural language for a variety of different reasons. There is a purely research
aspect and this is termed ‘computational linguistics’. It is closely linked to
computer science, linguistics, psychology and philosophy. Research has produced
natural language (NL) systems to simulate a psychiatrist, to generate children’s
stories, to paraphrase and precis, and even to place a political interpretation on a
set of facts.

The first practical application of NL was for machine translation from one
language to another. At the moment this application is being heavily funded by
the European Economic Community to cope with the seven official languages
into which every document has to be translated! Currently there is still no
machine translaticn, only machinewided translation — the output of the com-
puter is not a good translation and it needs to be edited by a linguist to make it
idiomatic.

Machine translation systems have to cover quite a large vocabulary, without
really ‘understanding’ the meaning of the subject matter. Naively, the system
only has to know enough to find which word or phrase in the target language is
closest to each word or phrase in the input. :

12 INTRODUCTION [Ch.

Another area of application is for ‘adviser’ systems. Such systems need to be
given a great deal of ké;owledge about a specific area so that they can detect the
users’ errors and explain them. These systems can appear extremely ‘intelligent’
as long as the conversation sticks closely to the application area. Surprisingly
they have almost nothing in common with natural language translation systems,
and an expert at programming machine transiation systems might have very little
idea how to set about building an adviser.

Natural language analysis is also required for automatic extraction of
information from text. The information is then recorded in some standard form
sujtable to be input to a database, or efficiently searched by further software.

More divergent areas of development include natural language generation, so
that computers don’t have to talk gobbledygook, and processing spoken language.
which is stil} at a rather speculative stage.

Major computer users are currently most interested, however, in natural
language modules which fit on top of other computer software. Given the
current interest in expert systems, a natural language ‘front end’ seems a very
promising way to provide a man—machine interface to such complex software.
In particular, natural language output to express the expert system’s ‘reasoning’
would be very useful.

Many computer systems offer a range of tools for data extraction, statistical
analysis and graphical output. Usually the tools have been developed quite
independently and the user has to express similar commands to the different
software packages in very different ways. A natural language ‘front end’ to all
the different packages would enable the user to forget which package het was
using and how to address it. Thus, users are interested in natural language as a
standard man—machine interface.

2. COMMUNICATING WITH DATABASES

The computer software best suited to benefit from a natural language front end
is the database. Typically databases hold huge quantities of data which have to be
stored in complex ways so as to secure the fastest access for the maximum
proportion of queries. Many formal query languages have been designed to
simplify the problem of getting the correct data out of this monolith.

These formal languages can be divided into ‘one-dimensional’ languages —
composed of letters, numbers and mathematical signs — and ‘two-dimensional’
languages' which enable the user to manipulate diagrams on a screen. A very
good two-dirmensional language is Query By Example [61]. An example query
is

“List the products ordered by Good Co.”

1 L apologise for having used the third person pronoun in the masculine gender throughout!

1] INTRODUCTION 13

(Words in lower case are typed on the screen by the user. The attribute names
are generated by the system):

orderline { PRODUCTORDER | ORDER | QUANTITY

p. product order

order ID ORDERDATE | CUSTOMER

order cust

customer| ID [CUSTNAME ADDRESS1 | ADDRESS2|COUNTY|POSTCODE|. . .

-

cust| good co

(The database against which this query is being evaluated is the ‘COPSE’ database
of Appendix 4).

“Despite the great practical differences between the many formal languages,
linear or two-dimensional, many of the same criticisms apply to all”, writes Cuff
[7]. “In each system the user must form a query using not only a description of
the data, but also a set of artificial syntactic, constructional and navigational
elements to encase it.”

Another problem is the requirement for completeness in a formal query
language which unnecessarily complicates the definition of the language for
casual users. Cuff writes, “Why emphasise a full syntax and precedence rules for
combining logical operators, when they avoid complex queries and mishandle
formal logic? . . . If some extra syntax is mandatory in order to eliminate
ambiguity in certain infrequent cases, then it may be better to remove it . . .
The ambiguity can be resolved by explaining the choices to the user when it
arises”.

Thirdly, a query formulation may be objectively much more complex than
one would expect from the corresponding English question. For example in
Query By Example, the query “List the products held at Bracknell” (against
the COPSE database) is:

stock | PRODUCTSTOCK | STOCKWHSE | BINID | QTYONHAND

p. product bracknell

while the previous example, “List the products ordered by Good Co.” sounds
no more complicated but requires three different tables.

14 INTRODUCTION [Ch.

Another pair of examples of queries expressed similarly in English but not
(yet) in formal languages, is “What costs more than £50?” and “What costs
more than desks?”’.

3. MAKING QUERY LANGUAGES MORE HABITABLE

Many of the shortcomings of formal query languages can be overcome by
extending them and giving more intelligence to the interpreter.

By doing less with syntax and more with word meanings, the language can
reduce the necessity for the user to conform to an artificial syntax. If the formal
words have a meaning close to their natural meaning, the burden on the user is
further reduced, especially if all alternative natural language words with the same
meaning are allowable synonyms in the formal language. A final refinement
would be to make the remaining syntax correspond to the syntax of natural
language. . :

A second improvement would be to reduce the requirement for the user to
know about the details of the database. Natural language synonyms for all
database names are an obvious start, but also the facility for the interpreter to
navigate around the database would be a great advantage (e.g. enabling the two
Query By Example queries to be phrased in a similar way). The ability to use the
structure of the data as well as the structure of the query to aid the interpretation
of the user’s input will be further discussed in the next chapter.

A third improvement that would be possible with an intelligent interpreter
is to recognise the user’s intended query on the basis of incomplete or slightly
erroneous input. Thus simple queries could be recognised in a very abbreviated
form (e.g. “Age Smith”) although more complex queries such as “Which sales-
mnan had at least two customers ordering desks in June?” may need more
complete expression. Queries with minor syntactic errors could be recognised if
the remainder of the query was sufficiently unambiguous.

Another improvement would be to enable the user to phrase his queries
incrementally. Thus his original query might be ambiguous and the system
could prompt him to select which interpretation he intended. Or else the user
could phrase a simple query (“How many customers are in debit?”) and follow it -
up with supplementaries (“And who are they?”).

Finally, an intelligent interpreter could perhaps recognise logical inconsist-
encies in a query and warn the user. or answer a broader but consistent query
(e g. “List orders placed by Good Co. and Better Co” could be interpreted as
“List orders placed by either Good Co. or Better Co.”).

Finally, two other desirable features of a query language are curtness and
breadth of use.

Clearly all these are facilities which ‘natural language front ends’ are aiming
to provide. In particular natural language is powerful and precise where required,
but also curt, and it does provide a conversational interface which enables the
user to ask incremental queries.

1] INTRODUCTION 15

The description ‘natural language’ may be a drawback because it suggests
capabilities beyond any current or foreseeable implementation. It tempts the
user to ask common sense questions outside the area of the database’s body of
information, or evaluative questions within it. Tennant found that users tended
to try a range of interactions outside the realm of database enquiry when pro-
vided with an NL interface [45].

The term ‘natural language’ front end is used for a good reason, however. It
implies that the user should not consciously have to translate his queries into
terms appropriate for the front end. Language users do unconsciously adapt
their way of speaking to their audience, however, and the natural language
subset accepted by the NL front end should be ‘dense’ enough for the user to
click into it without conscious effort.

As long as a user does not have a vastly over-optimistic expectation of what
the system can do for him, the intelligent natural language database front end
can enable him to get the right answers with less frustration, and little require-
ment for technical support.

4. NL SYSTEM ARCHITECTURE
The modules of an NL database front end are

— the parser
— the formal query generator
— the database access rouiines.

It is not sensible, however, for the system first to perform a parse. then to
construct a query and then to access the data. The grammatical analysis of a
sentence is closely dependent upon its meaning, so the grammar must be tailored
to the system’s knowledge structure. With the development of data modelling
and the implementation of data dictionaries it has become possible automatically.
to tailor the parser to a particular application by writing into the parser calls on
the data dictionary.

Thus the parser uses the same information as the query generator and so
formal queries can be built up during the parse. In fact, if a formal query cannot
be built up from the input sentence, the parse fails. This places a burden on the
formal query language. It must be powerful enough to express even queries
which, for implementational reasons, cannot be executed against the data. A
further requirement is for the formal queries to yield sensible answers. Thus
“Is the Tory candidate at Worthing over 507" should get a more sensible answer
‘than “no” if there is no Tory candidate at Worthing. In fact the QPROC system
described in this book actually evaluates the formal interpretation of definite
noun phrases (like “the Tory candidate at Worthing™) against the database
before completing the parse of the input query.

It follows that the formal language in the QPROC system is the fulcrum on
-which the parser and database access routines are pivoted. The discussion of the

16 INTRODUCTION _[Cha)

parser is to a considerable degree expressed in terms of the formal subqueries
generated by the different grammatical constructions. :

Another fundamental feature of the design of an NL database front end is
application independence. There is a trade-off between the size of the NL subset
the system covers, and its adaptability to new databases. An NL interface puilder
is a system whose grammar and formal query generator must be completely
rewritten for each mew application. Such a system provides useful tools for
constructing these components. The tools used have a major impact on the
character of the generated system. LIFER {22] is an NL interface builder. and
the systems it generates are very impressive.

Other systems provide considerable adaptability without any rewriting of
the parser. A very good example is TEAM [19] which includes an ‘acquisition
component’, enabling a database expert to tailor the system to a new applica-
tion by simply answering questions about the structure and meaning of items
in the database.

The QPROC system is more similar to TEAM, though considerably less
comprehensive.

5. THE SCOPE OF THE IMPLEMENTATION
J. L. Austin roughly divided sentences into five categories:

(1) Objective judgements
(2) Ordering, advising, questioning
- (3) Promising, understanding
(4) Social behaviour — apologising, congratulating
(5) Taking a stance — replying, assuming, conceding.

Of all these, an NL database front end can conly deal with a small proportion of
judgements, orders and questions. There is considerable research on the analysis
of speech acts which throws further light on (2) and (5), but this wili not be
dealt with in the discussion of the current implementation.

Another research topic may be termed ‘knowledge representation’. Firstly
this encompasses the structure required to express facts, opinions, etc., and
secondly it must include work on the objects of knowledge. Thus, for example,
if disparate statements are to be interpreted as giving knowledge about the same
thing, then the research must investigate the common primitive concepts under-
lying the different phrasings. In this book the ‘knowledge representation’ is
simply the database and data ‘model’, and only current database concepts are
used.

NL front ends, then, have the limited objective of coping with as ‘habitable’
as possible a natural language subset, given the available data modelling concepts.
The design is, in a sense, bottom-up, starting with the data model, superimposing
as powerful as possible a query language, and then using linguistic tools to map
natural language sentences onto formal language.

