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PREFACE

The Fourth International Conference on the Numerical Analysis of Semi-
conductor Devices and Integrated Circuits, NASECODE IV, was held in Trinity
College, Dublin, Ireland, from 19th to 21st June 1985 under the auspices of the
Numerical Analysis Group. This conference was the fourth in the NASECODE
series; it was attended by 130 delegates from 27 countries.

The aim of these international conferences is the fostering of a fruitful exchange of
ideas between electronic engineers on the one hand and numerical analysts on the
other who are using existing and developing new computer codes for the
computational modelling of semiconductor processes, devices and integrated
circuits. As on previous occasions the industrial sector was strongly represented
and it remains our goal to ensure that the topics discussed are relevant to the needs
of industry. This. policy guarantees that the scientific and technical material
presented is not only intellectually challenging but is also of practical importance.
The next conference in the series, NASECODE V, will be held in Dublin from
17th to 19th June, 1987.

Two additional events were held in association with NASECODE IV. The first of
these was a short course which was held on 17th and 18th June 1985. The Lecture
Notes, entitled “New Problems and New Solutions for Device and Process
Modelling” are published in a companion velume to this. The second event was a
workshop on the topic “An Introduction to Circuit-Level Simulation for VLSI
Design and Verification”. This was held on 24th and 25th June. There are no
publications available from this event. However it has been decided to organise a
short course and to encourage papers on this and related topics on the occasion of
the NASECODE V Conference.
\J

The present volume contains the full texts of the 10 keynote papers and 68 shorter
papers. The papers were received from the authors in camera-ready form. The
choice of this format has made possible publication within eight weeks of the
event.

It is most gratifying to see the growing interst worldwide in the NASECODE
Conferences. In particular, many new faces appeared at NASECODE 1V and
there was a marked increase in the number of contributed papers. It is a pleasure
to thank the participants, the speakers. the sponsors and the many people behind
the scenes, all of whom contributed generously to the success of this Conference.

Dublin, June 1985 ’ J.J.H. Miller
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HFIELDS: a Highly Flexible 2-D Semiconductor-Device Analysis Program

Giorgio Baccarani, Roberto Guerrieri, Paolo Ciampolini, and Massimo Rudan

Dipartimento di Elettronica, Informatica e Sistemisiica
Universita di Bologna, viale Risorgimento 2, 40136 Bologna, italy

1. Introduction

HFIELDS (Hybrid Flnite-ELement Device Simulator) is a general-purpose, two—dimension-
al, semiconductor—device analysis program developed at the University of Bologna, which does
not impose any restriction on device geometry. The program employs a triangular--element mesh
which can easily conform to irregularly shaped boundaries, and supports » variety of boundary
conditions to simulate ideal and resistive ohmic contacts, Schottky- barrier junctions, zates and
floating gates, and reflective boundaries.

At the user’s option, the program can solve either Poisson’s equation only, or Peisson’s and
one carrier continuity equation, or Poisson’s and both carrier continuity equations, so that the
numerical effort can be taylored to the specific problem at hand.

HFIELDS supports the most important physical effects affecting device performance, such as
bandgap narrowing due to heavy doping, SRH and Auger recombination, impact jonigation, and
a number of mobility models with various degrees of sophistication and accuracy. Consequently,
an extremely wide variety of silicon devices, both MOS and bipolar, ean be realistically and
efficiently simulated.’

Up to ten semiconductor and insulator regions are allowed by HFIELDS, each of which
can be a simply- or multiply-connected domain. For each region, a different set of models
and model parameters may be defined; the program handles therefore insulator-semiconductor,
semiconductor-semiconductor, and insulator-insulator interfaces.

Structure generation is accomplished via a user-friendly, interactive preprocessor, called
BRUNNHILDE, by which device geometry, impurity concentration, boundary conditions, phys-
ical models and parameters, and commands are defined and made available to the solver. The
input preprocessor is completely menu—driven. An option to the use of BR UNNHILDE is rep-
resented by IDAS, a process-oriented input preprocessor developed at §GS [Lombard: et. al.,
1985]. IDAS, in turn, makes use of the DAMSEL organization developed at CNET [Belhaddad
et. al., 1985|. .

" Mesh ge]neration can be performed either automatically or interactively, via a module called
ATMOS (Automatic Triangular-Mesh generation and Optimization System), fully interfaced
to BRUNNHILDE and IDAS. Criteria for mesh refinement are related to the curvature of the
boundary, doping gradient, and inversion layers. If the resulting mesh is not adequaie to the
specific needs of the user, the latter can interactively define windows ou the device cruss seciion,
and force horizontal and/or vertical refinement of the grid. :

This work is organized as follows: next section illustrates the basic semiconductor equations,
the physical models and the boundary conditions supported by the program. Section 3 is devoted
to the numerical techniques, with regard to the problem of discretization aud to the soiution
method. Section 4 illustrates mesh generation, and section 5 provides the description of results
obtained in the simulation of a Schottky-clamped BJT.

2. Physical Model
In its present version, the program solves the basic semiconductor equations in steady state,

" div (e, gradp) = —g(p — n + Np ~ Na) (1,6)
divﬂn/ﬂ) =(R~-G) (18)

-div(J,/q) = (R-G), (1,%)

where the current densities J,, and J, are classically expressed as .
3. = ~quangrad(p + Av) + ¢Da gradn ' (2,0)

Ip= “‘Ivl‘ﬂ’ gradlp ~ Av,) — ¢D, gradp. {2,%)

In egns. (1), (2), the various symbols are given the usual meaning; Ay, and Ay, represent
the condtfczior(l t)md valence band-edge shift due to heavy doping. As only the total bandgap



narrowing Ay = Ay, + Ag, can be experimentally determined from either optical or electrical
measurements, we assume, as it is customary, Ay, = Ay, = Ave/2. .
Bandgap narrowing Ay is assumed to follow Slotboom and De Graaf’s expression

AEqg = gAY = Epgn [ln(Ng/Naan) + (lnz(N,-/NBGN) + CBGN)UZ] , (3)

where N; = Np + N, is the total impurity concentration, and Epgwy, Nscw, and Cacw are suitable
parameters [Slotboom and De Graaf, 1976].

The net recombination rate on the RHS of egns. (1,b), (1,c) comprises several physical
effects, i. e. SRH and Auger recombination and impact ionization. Thus,

(R-G)=(R—-G)sru + (R~ G)ave — Crmp, (4)
where .
R—C)sru = L

( Jsru o (n+n1)+1o(p+p1)’ 5.9)

(R~ G)avc = [enn + cpp) (np - n2), (5,%)

Ginp = Qnnv, + apptp. (5,¢)

In eqn. (5,a), ny = n;. expl(E; — E:)/kT} and p; = n,, exp{(E; - E,)/kT}, E: being the trap energy. In
eqn. {5,c), v, and v, represent the electron and hole velocities, respectively, and a,, a, are the
electron and hole ionization coefficients. In HFIELDS, Chynoweth’s expressions (1958) are used
for a,, ap, i. €.

an = Ay exp(—bn/Ein) (6,a)

ap = Ap exp(~bp/Eip), (6,5)

where Ein = E ¢J,/|J,| and E;, = E«J,/|J,|; default values for the above parameters are taken
from Van Overstraeten and De Man (1970&

HFIELDS supports several mobility models which incorporate an ircreasing number of scat-
tering mechanisms: first, mobility is expressed vs effective doping ;. according to Caughey and
Thomas (1967)

Bmaz — Bmin
= 0 e ) 7
Ho Pmn+1+(M./N"I) - ( )

where the temperature dependence of the above parameters is chosen from Arora et. al. (1982).
In eqn. (7), N, may account for electron-hole scattering according to Engl and Dirks (1981):

Nie = aen N; + (1 - aeh)(" + P)~ (8)

Eqn. (8) is appropriate for bipolar devices, and the correction becomes significant in high-
injection conditions. For MOSFET’s, where no appreciable electron-hole scattering occurs,
N = Nu .

Next, mobility dependence upon the quasi-Fermi potential gradient F is accounted for by
means of the Caughey and Thomas expression

p= _*__#9__"_1_/_; : (9)
[1 + (ﬁﬂﬁ) ]
where the saturation velocity and its temperature dependence are taken from [Canali et. al.,
1975).

In MOSFET’s, surface scattering is an additional limiting factor for mobility; this effect is
accounted for by HFIELDS following Yamaguchi (1983):

B = po {1+ EB)712, : (19

where E, is the component of the electric field normal to current flow, and g,, rather than u, is
used in eqn. (9).



(19 A; a poss:ble alterntive, HFIELDS supports the Gummel-Thornber model for mobility
80
bo

“= _ /2 ! (1)
[+ (55)” (m8) ™ + (22)') |
where
po = pr [1+ Nie/(Nie/S + Nees)| 712 (12)
In eqns. (11), (12}, w is the acoustic-phonon Jongitudinal velocity, and u, is the lattice mobility.

For MOSF T(s, eqn. (10) is again accounted for, and ., rather than uo, is used in eqn. (11).
When dielectric regions are active parts of the "device to be simulated, only Poisson’s equation
is solved in the insulator, i. e.
: div {; gradyp) = ~p,

where p, is the insulator-trapped charge. At the insulator-semiconductor interface, continuity
of the electric potential is assumed, along with the following boundary conditions

(D, -Dy)ein = Qus (13,0)
. etn=q(R-0), (13,%)
J,c:,=—q(R—G’)., . (13,¢)

where D, and D, represent the electric displacement vectors at the semiconductor~ and insulator—
side of the interface, Q.. is the interface-trapped charge, and (2 — G), is the net surface recom-
bination rate. Also, i, is & normal versor oriented toward the semiconductor.

HFIELDS supports several types of boundary conditions, to account for the specific needs
of different devices: ideal ohmic contacts, resistive ohmlc contacts, Schottky contacts, gates,
floating gates, and reflective boundaries.

At ideal ohmic contacts, the following boundary conditions are imposed:

=V, + (kT/q) sinh™*(N/2n;.) (14,q)
3 ,
n,=\/£:—-+n,?,+%(- (14,8)
2
Pe = ']{_ +nl, - ‘)2!' (14,c)

where N = Np - N, is the net impurity concentration and subscript ¢ stems from contact.
At resistive ochmic contacts, eqn. (14 a) is modified as follows

we = V. + (kT/q)sinh™  (N/2n,.) - pJ - n, (15)

where 1, is an inward-oriented normal versor; eqns. {14,b) and (14,c), instead, are left unmodi-
fied.

At Schottky-barrier junctions, the followmg conditions, arising from the thermionic~diffus-
ion theory, are imposed:

e =V.—®p + (kT/Q) ln(Nc/'h‘t) (16,0}
I 0tn = ov7 (ne — no) (16,
I, el =~0of {p. — po), " (16,¢0)

where @5 is the barrier height, o7 and vl are the thermionic emission velocities, defined as
ol = ALT3/gN, (17,q)
vi = A;T?[gN,, (17,9)

A, A; being the Richardson constants . or electrons and holes, and ng, po the equilibrium carrier
concentratmns at the junction, i. e.

no = ny. exp{gwo/kT) (18,4)



