

Meta-Programming in Logic Programming

edited by Harvey Abramson and M. H. Rogers

The MIT Press !
Cambridge, Massachusetts
London, England

\

©1989 Massachusetts Institute of Technology

All rights reserved. No part of this bovk may be reproduced in any
form by any electronic or mechanical means (including photocopying,

recording, or information storage and retrieval) without permission in
writing from the publisher.

This book was printed and bound in the United States of America

Library of Congress Cataloging-in-Publication Data

‘Meta-programming in logic programming / edited by Harvey Abramson
and M.H. Rogers.
p. cm. — (Logic Programming)
ISBN 0-262-51047-2 .
1. Logic programming. L. Abramson, Harvey. II. Rogers, M. H.,
1930- III. Title: Title: Meta-programmmg IV. Series.
QAT6. 63.M47 1989
006.3—dc20 89-35120

" CIP

Series Foreword

The logic programming approach to computing investigates the use of
logic as a programming language and explores computational models
based on controlled deduction.

]

The field of logic programming has seen a tremendous growth in the last
several years, both in depth and in scope. This growth is reflected in the
number of articles, journals, theses, books, workshops, and conferences
devoted to the subject. The MIT Press series in logic programming was
created to accommodate this development and to nurture it. It is dedicated
to the publication of high-quality textbooks, monographs, collections, and
proceedings in logic pregramming.

Ehud Shapiro)
The Weizmann Institute of Science
Rehovot, Israel :

Foreword

A meta-program is any program which treats another program as data. The

’ language in which the meta-program is writtenys usually called the met.a-language,
and the language of the program which is the data for the meta—pro&ram is called
the object language. This is-a Wide;ranging definitiqp in that it includes such
“famdilipr” meta-programs as compilers, editors, simulators, depuggers, program
transformers, and so on. When the meta-language and object-language are iden-
tical, it also includes “meta-circular interpreters”, i.e., interpreters for a language

which are written in the language being interpreted.

Meta-programming is a subject therefore of considerable practlcal and the-
oretical interest, and has been for some time. There is an added dlmenann to
this interest when it becomes easy to write, test, and consider the implications of
meta-programs. Most of the meta-programs mentioned above, where the meta-
language and object language are different, are complicated objects, hard to write,
hard to maintain, and hard to understand. Consider, however, the followmg well
known “vanilla” mterpreter for logic programs and pure Prolog:

\

solve(empty) «—
solve(z&y) — solve(z) A solve(y)
solve(z) +— clause(z,y) A solve(y)

Although it is possible to write meta-circular interpreters in other programming
languages, LISP for example, they are not quite as concise as this one.

This standard vanilla interpreter leads into many practical and theoretical
issues. On the practical side, to take a few examples, more flavors are wanted
in the sense of being able to provide a complete definition of real progrummng
languages such as Prolog (with some admittedly unsavoury features) and to im-
plement sophisticated knowledge based systems, including expert systems. On
the theoretical side, the simple vanilla interpreter leads into tricky questions of
representation and of soundness and correctness of the interpreter.

In order to address these practical and theoretical problems, Mg , a Work-
shop on Meta-Programming in Logic Programming was held at the University of
Bristol, 22-24 June, 1988. This book is the result of that workshop, containing -
all but a few of the original papers presented there, and qmte often, with the
advantage of the more relaxed form of book publication, in an expanded and
deepened form. ! We shall let the papers speak for themselves, the collection as
a whole representing a fairly comprehensive view of what meta-programming is
about within the discipline of logic programming.

! The papers which do not appear here have been- pubhshed elsewhere. Alan Bundy’s The Use
of Explicit Plans to Guide Inductive Proofs appears in Proceedings of CADES9, edited by Luck,
R. and Overbeek, R., Springer-Verlag, and Harvey Abramson’s Metarules and an Approach to
Conjunction in Definite Clause Translation Grammars, appears in Logic Programming: Pro-

ceedings of the Fifth International Conference and Symposium, edited by Robert K Kowalski
and Kenneth A. Bowen, MIT Press.

Abramson and Rogers

The M%Workshop was organized by Prof. J.W. Lloyd who also edited the
original, provisional Proceedmgs The members of the Program Committee were

Harvey Abra.mson, University of Brlstol

e P.M. Hlﬂ, University of Bristol

e J.W. Lloyd, Umvemty of Bristol ' ,
e S.G. Ow'en, Hewlett—Packard Research Labs, antbl

e M.H. Rogers, University of Bristol o ’ : |
e JC. Shepherdson, UmversWy of an’tol . ,;)

Many thanks go to Peter Phxlhps, IKI];X hacker extycordmmre, for lns eﬁ'orts in .
brmgmg a host of vaned papers {o h,uniform Stylei ot .

B . i i
L CL Gy Harvey Abamson
' ' A /'~ M.H. Rogers
' R ST : ¢ Apnl 1989 .
' o i ' i
[) N t
’ Yo
4 ot i
; :
i ; b
;- i C v .
‘ ’ - ‘, ' ' ~
o . i,
S : N hS ”f‘
0o Te
;

Ly

Contents

1 A Meta-Rule Treatment for English Wh-Constructions 1
- L. Hirschman .

2 Analysis of Meta-Programs 23
P. M. Hill and J. W. Lioyd

3 Metalogic Programming and Direct Universal Compugdbility 53
H. A. Blair

4 A Simple Formulation of the Theory of Metalogic Programming 65
V.S. Subrahmanian

5 A Classification of Meta-level Architectures . 103
F. van Harmelen

6 Reflection in Constructive and Non-cgonstructive Automated
Reasoning A 123
F. Giunchiglia and Alan Smaill

7 Processing Techniques for Discontinuous Grammars . 141
V. Dahl and P. Massicote - .

8 Semantically Constrained Parsmg and Logic Programming 157
S. Akama and A. Ishikawa

9 Negation as Failure: Proofs, Inference R.ules and . .
Meta-interpreters : . 169
A. Bruflfaerts and E. Henin

10 An Integrated. Interpreter for Explammg Prolog s Successes and
Failures . : 191
L. U. Yakinalp and L. Sterlmg '

11 Tracing requu'ements for Multl-layemd Meta-programmmg 205
A. Bowles and P. Wilk

12 The Compilation of Forward Checking Regimes through
Meta-Interpretation and Transformation .. 217
D. De Schreye and M. Bruynooghe

Contents

13 Using Safe Approximations of Fixed Points for Analysis of
Logic Programs 233
J. Gallagher, Michael Codish, and E. Y. Shapiro

14 Type Inference by Program Transformation and Partial
Evaluation Ly 263
T. W. Frihwirth -

15 Complete Sets of Frontiers in Logc-based Program
Transformation 283

M. H. M. Cheng, M. H. van Emden and P. A. Strooper

16 A Treatment of Negation during Partml Evaluation 299
D. Chan and M. Wallace

17 Issues in the Partial Evaluation of Meta-lnterprgters 318
S. Owen

18 The Partml Evaﬁmtmn of Imperahve Programs Using Prolog 341
B. J. Ross

19 Prolog Meta-Programmmg with Soft Databases 365
P. Tarau and M. Boyer .
« L :
20 What Is a Meta-v le in Prolog? 383
J. Bal'klund Vs '

21 Meta-Progmmmmg Prolog Through Direct Introspectxon. A
Comparison: with Interpretation Techniques® v 399
M. Cavalieri, E, Lamina, P. Mellc and A. Natali A Voo

22 Design and Implementation of An Abctract MetaProlog Engme
for MetaProlog = . - { 417
« L Cieekli :

23 Qu-Prolog: an Extended Prolog for Meta Level Programming 435
J. Staples, P.J. Robinson, R:A. ‘Paterson, R.A. Hagen, A. J Craddock and
P.C. Wallis

24 A Meta-Logic ﬁ Functional Programmmg o _ 453
J. Hannan and D. Miller - : i h

25 Meta-Logic Programming for Epistemic Notions _4an
Y. J. Jiang and N.\Asarmi

i

‘Mh

Contents _.
I

26 Algorithmic Debugging with Assertions 201
W. Drabent, S, Nadjm-Tehrani and J. Maluszynski

27 The Logical R,econstruchon of Cuts as One Solution Operators 523
P.J. Voda

28 Hypergraph Gramniars and Networks of Constralnts versus
‘Logic Programming and Metaprogrammmg 531
F. Rossi and U. Montanari X '

Chapter 1

A Meta;Rulev Treatment for
English Wh-Constructions

Lynette Hirschman!

Paoli Research Center
Unisys Defense Systems

Abstract

This paper describes a general meta-rule treatment of English wh-
constructions (relative clauses, and questions} in the context of a broad-coverage
logic grammar that also includes an extensive meta-rule treatment of co-ordinate
conjunction. Wh-constructions pose difficulties for parsing, due to their introduc-
tion of a dependency between the wh-word (e.g., which) and a corresponding gap
in the following clause: This is the book which I thought you told me to refer to
(). The gap can be arbitrarily far away from the wh-word, but it must occur
within the clause, or the sentence is not well-formed, as in *TI be book which I
read it.

~A meta-rule treatment has several advantages over an Extraposition
Grammar-style treatment: a natural delimitation of the gap scope, the ability
to translate/compile the grammar rules, and ease of integration with conjunc-’
tion. Wh-constructions are handled by annotating those grammar rules that
license a gap or realize a gap. These annotations are converted, via the meta-rule
component, into parameterized rules. A set of paired input/output parameters
pass the need for a gap from parent to child and left sibling to right sibling until
the gap is realized; once the gap is realized, the parameter takes on a no.gap
value, preventing further gaps from being realized. This ‘change of state’ in the
paired parameters ensures that each gap is filled exactly once. The conjunction
meta-rule operates on the parameterized wh-rules to link gaps within conjoined

structures by unification, so that any gap within a conjoined structure is treated
identically for all con_]uncts

! This work has been supported in part by DARPA under contract N00014-85-C-0012,
administered by the Office of Naval Research; and in part by internal Unisys funding.

g

2 Hirschman

1.1 Introduction

Wh-constructions are one of the classically difficult parsing problems, because a
correct treatment requires interaction of non-adjacent constituents, namely the
wh-word, which introduces a constituent in clause-initial position, and the fol-
lowing construction which is missing a constituent (the gap). The gap can be
arbitrarily far from the introducing wh-word (an unbounded dependency); in
particular, it can appear within deeply embedded constructions, such as the per-
son that [I had hoped [Jane would tell [() to get the books]]], where there are
three levels of embedded structure. It is possible, in principle, to write a rule for
each case where a gap can appear. However, since the number of constructions
which can accommodate a gap is very large (e.g., most complement types), this
is both extremely labor-intensive and unmaintainable from the grammar writer’s
point of view.

It is also possible to write general rules for gap-realization, e.g., a noun phrase
. can be realized as a gap. If this approach is taken, then these rules must be care-
fully constrained to accept gaps only when inside a wh-construction; in addition,
the wh-construction must contain exactly one gap. These restrictions involve
complex and expensive search up and down the parse tree, to determine whether
a gap is occurring inside a wh-construction.

In many ways, the wh-problem parallels the problem of co-ordinate conjunc-
tion that has also been a major obstacle for natural language systems. Both
constructions involve gaps, both affect large portions of the grammar, and both
require a major modification to the grammar and/or to the parsing mechanism
to handle the linguistic phenomena. -

There have been two basic approaches to comunctwn and wh-constructions in
the computational linguistics literature: modification of the parser (interpreter)
and meta-rules.- Of these, the first approach has been far more common. For
conjunction, a number of variants on the ‘interrupt’ driven approach have been
presented, both in conventional natural language processing systems [13, 12, 14],
and in the context of logic grammars [4]. The same is true for logic grammar
implementations of wh-constructions: the most generally used treatment is the
interpreter-based treatment of Extraposition Grammar (XG) [10].

Meta-rules offer an appealing alternative to interpreter-based approaches, both
for conjunction and for wh-expressions. Meta-rules are particularly well-suited to
phenomena that range over a variety of syntactic structures, where the linguis-
tic description would otherwise require regular changes to a large set of gram-
mar rules. The use of meta-rules turns out to be efficient computationally. It
also preserves compactness of the underlying grammar, so that the grammar is
still maintainable from the point of view of the grammar-writer. Finally, the
meta-rule approach avoids additional interpretive overhead aiid permits transla-
tion/compilation of grammar rules for efficient execution [5].

For conjunction, the meta-rule approach forms the basis for a comprehensive

1. A Meta-Rule Treatment for Wh-Constructions 3

treatment of co-ordinate conjunction in Restriction Grammar [7]. Abramson has
provided a generalization of this approach, formulating meta-rules as a specialized
case of meta-programming [2). Other researchers have also examined a meta-rule
approach to related phenomena; Banks and Rayner, for example, have proposed
a meta-treatment of the comparative [3].

For wh-constructions, we propose here an approach based on parameterization
of the grammar rules. This is similar in spirit to the GPSG notion of ‘slash cate-
gories’ [6], but in the framework of logic grammar. The use of parameterized rules
to pass gap information has previously been proposed in a logic grammar frame-
work, specifically as gap-threading [10, 11). Our approach differs from Pereira’s in
several ways, the most important of which is the use of meta-rules. The meta-rule
approach provides a much cleaner user interface, making it possible for the gram-
mar writer to use linguistically motivated annotations to indicate gap license and
gap realization for the unparameterized BNF definitions in the grammar. The
meta-rules process these annotations to generate parameterized grammar rules
which, in turn, can be translated and compiled for efficient execution. The meta-
rule treatment also has the property of combining seamlessly with a meta-rule
treatment of co-ordinate conjunction.

1.2 Wh-Constructions: The Linguistic Issues

Wh-constructions are one instance of a class of problems referred to as unbounded
dependencies — that is, constructions where the interdependent entities may be
arbitrarily far apart. In the case of wh-constructions, we have a wh-expression
which begins the clause (e.g., who, what, which, whose book, how, etc.) followed
by a gap at some later point in the clause. The wh-expression may take the place
of a noun phrase, an adjective phrase or an adverbial phrase. These may appear
in the subject, object or sentence adjunct positions.

As the sentences of Figure 1.1 illustrate, there are a variety of wh-constructions,
namely, relative clauses (includimg the zero-complementizer case, where an overt
wh-word is absent, as in the person I saw), indirect questions (I don’t know what
they mean), wh-questions (What do you want?), and headless relatives (You get
what you deserve). In addition to these basic types of wh-construction, there
are also some constructions where the wh-expression is embedded inside a noun
phrase (this is the person whose mother I met), with the wh-word whase modify-
ing a noun phrase; the subsequent gap is filled by the noun phrase (the person’s
mother) of which the wh-word is a part. There are also wh-constructions embed-
ded in prepositional phrases, as in the person from whom I learned it or the door
the key to which is missing.

A wh-construction involves (1) a wh-word (e.g., who) contained in a clause-
initial wh-expression; and (2) a gap: a constituent omitted in the clause following
the wh-word, e.g., the book which I bought (). Relative clauses also have an
antecedent for the relative pronoun (the wh-word); for questions, the wh-word

4 Hirschman

marks the questioned item.

Wh = who; gap = subject NP

The person who () was here

Wh = who(m); gap = object NP

Who did you see ()?

Wh = that; gap = object NP

The time that I spent ()

Wh = that; gap = sentence adjunct adverbial
“The time I visited them ()

Wh = who(m); gap = embedded ob_]ect

The person who they told me they had tried to visit ()
Wh = who; gap = embedded subject

Who did they tell you () had visited them?

‘Wh = how; gap = sentence adjunct adverbial
Do you know how they did it ()?

Figure 1.1: Wh-constructions in English

To regularize a wh-construction, the wh-expression fills in the gap, and the
wh-word is replaced by its antecedent (if in a relative clause).! For example, in
the phrase the movie which I saw (), the wh-expreseion is which and the gap is
after saw. Moving the wh-expression into the gap, we get the movie [I saw which].
Then, replacing which by its antecedent (the movie), we get: the movie [I saw the
movie}. Similarly for questions, we get what did you see ()7 regularized as did
you see what?. In some cases, however, the wh-word is not identical to the whole
wh-expression, as in the bird whose nest I found (). Here, the wh-expression is

* whose nest, and the wh-word is whose. Agaift, we replace the gap (the object
of found) by the wh-expression, to get the bird [I found whose nest]. Then we
replace the wh-word by its antecedent, namely the bird: the bird [I found the
bird’s nest], preserving the possessive marker from whose. Similarly in a question,
we get: which book did you read () regularized as did you read which book?.
To summarize, wh-expressions are introduced by a phrase containing a wh-word;
following a wh-expression, there must be a gap, and this gap is understood as the
wh-expression, after it has had the antecedent of the wh-word word filled in (if in
a relative clause).

! The expression replace by its antecedent is used loosely here. What is really meant
is replacing the relative pronoun by a pointer ta the antecedent. This preserves co-
referentiality of the relative pronoun and its antecedent, and avoids the dangers of copy-
ing quantifier and other modifier information:

1. A Meta-Rule Treatment for Wh-Constructions 5

The need for a gap can be captured very simply by associating with each
grammar definition a set of paired input/output parameters. The input parameter
signuo's whether or not a gap is need when the node is about to be constructed, at
rule imvocation time. The output parameter signals whether that need has been
satisfied once the node is completed, at rule exit. Thus an assertion in a relative
clause has as its input parameter the need for a gap (need_gap) and on exit, that
need must have been satisfied (indicated by a no_gap output parameter). These
parameters, once set, are simply passed along from parent to child, and sibling to
sibling, via unification through linked input/output parameters.

However, an assertion may also occur as the main clause, where it is not
licensed for a gap. This is illustrated in Figure 1.2 by the (simplified) definition for
a sentence, as having two alternatives: an assertion or a question. The definition
for assertion itself therefore must be neutral with respect to gaps, since that
depends on where it is called from (relative clause or sentence). The parameters
in the assertion definition simply pass along the information from parent to child
and sibling to sibling. If the assertion is in a relative clause, then the need for a
gap is passed,along until some node (nullwh in Figure 1.2) realizes the gap (that is,
accepts the empty string), at which point its output parameter is set to no_gap;
this is passed along and finally, back up to assertion. If the assertion occurs as
the main clause of a sentence, it has no need for a gap and in fact, cannot unify
with the gap realization rule, which requires an input parameter of need_gap.

This mechanism enforces the coustraint that only a node with the parameter
pair (need_gap/no.gap) can dominate a gap. Any node whose input and output
parameters are equal has not ‘changed state’ - that is, whatever it needed (or
didn’t need) on rule entry, it will still need at rule exit. Procedurally, any rule
whose input and output parameters are equal cannot unify with the gap realization
rule. The flow of information through the tree is illustrated in Figure 1.3.

1.3 The Framework: Restriction Grammar

" The proposed solution is presented in the context of Restriction Grammar (8],
which is the syntactic portion of the PUNDIT text processing system [9]. How-
_ever, this solution is only dependent on a few general properties of Restriction
Grammar, which it shares with other formalisms (e.g., Definite Clause Translation
Grammars [1]). A Restriction Grammar is written in terms of context-free BNF
definitions, augmented with constraints (restrictions) on the well-formedness of
the resulting derivation tree. Constraints operate on the derivation tree, which is
constructed ‘automatically during parsing; restrictions traverse and examine this
tree, to determine well-formedness.
‘One_ of the significant characteristics of Restriction Grammar is the absence
of parameters. Context sensitivity is enforced by the restrictions, which obtain
information from the derivation (parse) tree, rather than via parameter passing.

Hirschman

% Simplified B¥F definitions before paraloterlzat1on for
wh-constructions:

sentence
rel_clause
assertion
subject
verb
category
object

noun_phrase ::
noun_phrase. ::

1nr
m

null T
nullvwh

wh

oo

non

assertion; question.
wh, assertion.
subject, verb, object.
noun_phrase. i

v, % * indicates terminal lexical

noun_phrase; assertion;....

lnr; *pro.

nullvh.

ln, *n, rn. % noun with left, right adjuncts.
null; pp; rel_clause. ' ;

% . % empty string (for empty adjunct slots)
% . % empty string for gap roaligation.

[whol; [whichl;

% Parameterized BNF defimitions for handling relative clause:

% Where parameters pass no information, input =

sentence(X/X)

output parameter.

assertion(no_gap/no_gap); question

(need_gap/no_gap) .
rel_clause(X/X)

wh(Y/Y), assertion(need_gap/no_gap).

assertion(In/Out)’ subject(In/Subj), verb(Subj/Verb), object
(Verb/Out).

subject (In/Out) := noun_phrase(In/COut).

verb(In/In) 1=y, :
object(In/Cut) := noun_phrase(In/Out); assertion(In/Out); ...

noun_phrase(In/In) ::=

1nr(In/In); #*pro.

noun_phrase(need_gap/no_gap)

1nr(In/In)

rn(In/In)

null(In/In)

nullsh(need_gap/no_gap)

wh(In/In) ::=

::= *nullvh. % empty string
% for gap
% noun + left,

% right adjuncts

1n(In/In), *n, rn(In/In).

null(In/In); pp(In/In);
relative clause(In/In)

=% . % empty string (for empty adJnnct slots)

=% . % empty string for gap realization.

[vho];.[vhich];

Figure 1.2: Simplified Rules with Parameters for Wh.

1. A Meta-Rule Treatment for Wh-Constructions 7

np(X/X)

I

n ——rn(X/X)
rel_clause(X/X)

vh(Y/Y)-assertion(need_gap/no_gap)

| TS\ ~ =
mice ‘vhich ubj(need_gap/need_gap)-verb (need_g\a;_)'—}/x'xeed_gap)—obj(need_gap/no_ga)

H - - \ - -
np(need_gap/need_gap) v np(nee}_gap/no_gap‘
l V] | \ N
pro(need_gap/need_gap) _ nullvh(need_gap/no
h " >
[they]

Figure 1.3: Flow of Information in ...mice which they eat.

Restriction Grammar is implemented as a form of logic grammar which includes
parameters not just for the word stream, as in DCG’s, but also for the auto-
matic construction of the derivation tree as well. In addition, each grammar rule
is augmented with an associated regularization rule (indicated by a right hand
arrow —), which incrementally constructs an Intermediate Syntactic Representa-
tion (ISR). The ISR is an operator/operand notation that represents a canonical,
regularized form of the parse tree. The regularization rule composes the ISRs of
the daughter nodes in the derivation tree into the ISR of the current node, using
lambda reduction. Computation of the ISR for wh-constructions is discussed in
greater detail in section 6.

1.4 The Solution: Meta-Rules

Although parameterization is"an elegant and efficient solution, it presents a ma-
Jor problem - it obscures the declarative aspect of the BNF rules, and correct
parameterization of rules can be tedious and error prone, especially since there
are some 40 object types in our current broad-coverage grammar of English.
The solution is to define a set of annotations to express the required linguistic
constraints: gap introduction via wh-word, gap realization, and gap prohibition.
Figure 1.4 shows a grammar using annotations defined as prefix operators applied
to the node names in BNF definitions. Gap introduction is written as <<, gap
realization as >>, and gap prohibition as <>. These are used, for example, to
flag the need for a wh-word in a wh-expression, followed by the need to realize a

8 Hirschman

gap:
rel_clause ::= <<wh, >>assertion.

Annotations can appear on either the left-hand side or the right-hand side of
BNF definitions. By introducing the gap-requirement on the right-hand side of a
BNF definition, we create a conditional gap requirement. For example, assertion
requires a gap in the context of a relative clause, but not as the normal realization
of a sentence (main clause) option. Thus we do not want to annotate the definition
for assertion, but the call to assertion in rel_clause. However, the definition for
nullwh is always a gap realization rule, hence it is annotated on the left-hand side
(see Figure 1.4).

‘In certain cases, we need to define a special gap-requirement rule. For ex-
ample, we define a special case for noun-phrase gap realization. This enables us
to block transmission of gap parameters in all other options of noun phrasg. To
do this, we.use the third annotation <> to set input parameter equal to output
parameters. This annotation is also used to show that the verb can never license a
gap. Similarly, the determiner (det) and pre-nominal adjective (adjs) rules cannot -
license a gap. |

The remainder of the rules require no annotation; their parameters simply
transmit whatever gap information is passed in. Figure 1.5 shows the parameter-
ized definitions corresponding to the annotated definitions used in Figure 1.4.

1.5 The Meta-Rule Component

The meta-rule.component for parameterization is implemented as a general pro-
cedure which adds parameters to each production in the grammar. At grammar
read-in time, each rule is parsed and parameterized appropriately, depending on
its annotation. The basic case is no annotation, in which case the following rules

apply (Label is the left-hand side of the BNF definition; Rule is the right-hand
side):

% Basic case:

wh_params(Label,Rule,NewLabel,NewRule) :-
check_head_params(Label,InParam/OutFaram, NewLabel),
take_apart(Rule,NewRule,InParam,OutParam),!.

check_head_params(Label, Params, NewHead) :- !
insert_param(Head,Params,NewHead).
Insert_param(Head,Params,NewHead) :-
¥ewHead =..[Head,Params].’

% Conjunction
take_apart((A,B),(NewA,NewB),InParam,OutParam) :- !,

