Structured
Programming
into ANSI C

Structured

Programming
into ANSI C

Chris Carter ssc. phd, MIEE, MBCS, CEng

School of Computing and Management Sciences
Shetfield City Polytechnic

Pitrnan _:,

PITMAN PUBLISHING
128 Long Acre. London WCZE 9AN

A Division of Longman Group UK Limited
© C. Carter (991
First published in Great Britain 1991

British Library Cataloguing in Publication Data
Carter, Chris _ '
Structured programming into ANSI C.
1. Title
005.13

ISBN 0-273-03687-4

Al rights reserved. No part of this publication may be reproduced.
stored in a retrieval sysiem. or transmitted. in any form or by any
means, electromc, mechanical, photocopying, recording and/or
otherwise without the prior written permission of the publishers or
a licence permiiting restricted copying in the United Kingdom
issued by the Copyright Licensing Agency Ltd, 90 Tottenham

. Court Road. London W1P YHE. This book may not be lent, resold,
hired out or otherwise disposed of by way of trade in any form of
binding or cover other than that tn which it is published. without
the prior consent of the publishers.

Reproduced and printed by photolithography
“in Great Britain by Biddles Ltd, Guildford-

Preface

This book is suitable both for complete beginners and for those who are
moving to C from another language such as Pascal. The book can be used as
a stand-alone text, or to complement a lecture course.

Those who already know how to program may skim or skip Chapters 1
to 3, apart from Sections 3.1 and 3.2. If you are a beginner but wouid still
prefer to get on with programming as quickly as possible you can do
likewise. However, as you move from simple to more advanced programs,
you will find that you need the information in the earlier Chapters, on how to
design programs.

Some people think of C as a second rather than as a first language. In this
book we concentrate on a sub-set of C that could almost as well be Pascal.
The ‘more ‘'techy' features of the language such as pre- and post-
incrementation are left until towards the end of the book. Using this approach
C proves to be no more difficult to teach, nor less educational, than Pascal.
There are many good reasons for preferring C as a first language: "

@ It is an excellent general purpose language, which is in strong
demand by employers and which is widely used and w1dc1y
_available.

- @ Whilst it is a structured language, structure is not imposed by the
language, but by the programmer. This is helpful when using the
language for more advanced applications. '

@® Itis modular, seif-consistent and concise.

. The programs in this book were originally designed to be run on
compilers which are ANSI C compatible. Should your compiler not yet be
fully ANSI then slight modifications to the header files, the function
declarations and the start of each function definition may need to be made.
These minor modifications are detailed in Appendix 1 which contains a
UNIX shell script to convert them automatically.

Should you need an (unprotected) copy on 3.5" disk of all of the
programs (as detailed in the Program and Function Index) please quote the
title of this book, your name and address and whether you require the IBM or
MAC version and enclose £5 (world-wide) to cover costs. The address is Dr.
Chris E. Carter, Sheffield City Polytechnic, CMS Schoal, 100 Napier Street,
Sheffield S11 8HD.

Acknowledgements

The author would especially like to acknowledge the contribution of Mr. Bill
McCausland, a retired school teacher who took a part-time degree at Sheffield
Polytechnic at the age of 63. Bill has gone through the text and programs
several times and has made many helpful suggestions. Almost at the other
extreme of age range the author's 16 year old son Robin has also contributed
ideas and suggestions including advice on computer game-play conventions.
Others who have helped with program checking and proof reading include
my friends Dave Denton and Phil Mouncey.

Thanks are also due to many students on courses throughout the
Polytechnic ranging from the Advanced Certificate to the part-time MSc.,
who have had numerous exercises and drafts of parts of the book tried out on
them. The technical staff of the Polytechnic, particularly John Leach, have
also contributed much enthusiasm and technical support. The extensive
computing facilities at Sheffield City Polytechnic have enabled the programs
to be tested on a variety of systems.

John Cushion of Pitman has contributed many valuable suggestions from
his wide experience of technical writing as well as consistent encouragement.

This book was produced using an Apple Macintosh computer, Superpaint V
and Word 4.

Overture

On December 3rd. 1989 the Sunday Correspondent (an English Newspaper
which has sadly since become defunct) ran a rather sensationalised story on
the French nuclear reactor threat to the UK. The article questioned the
inherent safety of the French reactors and pointed out that some of the
reactors were only 60 miles from Southampton, a port on the south coast of
"England. After criticising the hardware the article went on to say that the
reactor control systems were programmed in "a language which is notorious
for allowing dangerous errors to slip in, say British experts”. These British
experts were also attributed as saying that "it is all too easy to write
dangerous programs with C, yet difficult to spot the mistakes using safety
analysis currently in use". The French, on the other hand, were said to be
keen to give computers more control over nucledr reactors as a way of
-avoiding another Chernobyl. At the end of the article a French spokesman
was attributed with the words "Yesterday we had a demonstration for visitors
and everything worked fine". The article made me think of the following
 points with regard to computers.

@ The safety or otherwise of a computer program has more to do with
the design of the program than with the language employed.

@ The language C is now very significant and is thought by some to be
the most suitable language to use when the control of hardware and
safety critical systems is involved.

@® The English think that they know more about programming
computers than the French. This is a curious view since the French
computer industry is in at least as good a state as our own.

Contents

1 Inttroduction

1.1 What is Programming ?
What is C ?

ANSIC

The Compiler and Portability
The Significance of C
C++

Editors

The Keyboard

Error Messages
Backingup . -
The Operating System
Program Libraries
Programmer Accuracy
Summary .

i bl et pond et pd ek ek et et pund pd et
[o

4o L3N = O

B V]

Structured Programs

21 Pseudo-code
2.2 A Note about the Algorithms
23 The Taps and Pipes Problem

2.4 Modified Goto

2.5 Structured Solution

2.6 Modified Structured Solution
2.7 Summary

2.8 Self-test

3 Structured Data

Memory and Variables
Variables

Arrays

Hand-testing Programs

A Letter Sorting Problem
A Specialised Solution
Six-letter Solution

A Loop Solution

Any Number of Letters
Finding the Earliest Letter
Summary

Self-test

gnguul»uwl»wwwkutn
b — O

— = 00N B Wt

4 Programming into C

4.1 What is a C Program ?
4.2 A First Program
43 Type

N S I e

N0 D OG0 0 NN WA

pams

—
—

P et et pont gt
~N N LW W

i
oo

[y
Xe)

o =
OC

>]
"

(N NESHSESES
~J LA (v LI B -

29

4.4
4.5
4.6
4.7

48 .

49

4.10
.11
4.12
4.13
4.14
4.15

ASCII Conversion Program
Add Digits Program
Important Ideas
Temperature Conversion
Logical Variables

Operators

Unary Operators

Mixed Mode Arithmetic
Annotating Programs

"Choosing Names

Summary
Program Ideas

5 Compound Statements

MU}(}\(IIU\‘J\‘-’\‘J\L’\?]\
— 0 00 ~1 O\ h Ba LIRS

0

Inroduction

If Then Else
Switch Case

While

For

Unofficial For Case
Break and Continue
Goto

Summary

Program Ideas

Syntax Diagrams

6 Writing Functions

6.1
6.2

6.12
6.13
6.14
6.15

Using Functions
Function Parameters
Function Prototyping
Returned Values

Scope

Functions and Scope
Defensive Programming
Geuing Any Character
Getting a Positive Integer
Coping with Keying Errors
Constants

Repeated Times Tables
Making a Grid

Summary

Program Ideas

7 Using the Standard Library

~1 -~} -J 2

T ot =

Borrowing a Function
The Library Stock
Casting

Moduluas Operator and Primes

61

8 Types

90 00 00 O¢ 30 20 90 90 90 %0 20
ORIV T e NV, W NP S

9.7
9.8
9.9
9.i0
9.1

9.12

De Morgan's Theorem
Prime Number Programs
Sum of Primes

Printing with Formatting
List of Primes

Using Scanf()

Interest Rate Calculation
Getting Any Character
Using Macros
Unbuffered Input
Summary

Program Ideas

Qualifiers and Modifiers
Modifiers

Mixed Precision Arithmetic
Type Conversion
Qualifiers

Enumerated Types

Static and Auto Variables
Implementation of Scope
Other Qualifiers
Summary

Program Ideas

One-dimensional Arrays
Strings

Comparing and Copying Strings
The Sizeof Operator

Passing Arrays to Functions
Selection Sorting

Bubblc Sosting

Passing Strings to Functicns
Reading a Character String
Temperature Conversion
Summary

Program Idcas

10 Compound Types

(v}
10.2
10.3
04
105
i0.5
7
10.8

Two-dimensional Arrays
Abstract Data Types
Structuses -

Passing Arrays through Structures

Using Structures
Unions
Sumimary
Program Ideas

106
107
107
108
110
110
114
116
117
121
122
123

124

124
125
127
128
130
131
136
136
140
141
141

144

144
145
146
149
150
151
154
155
156
159
164
164

166

166
171
174
177
178
180
182
183

11 Pointers

11.1
112
11.3
114
115
11.6
11.7
11.8
119
11.10
11.11
11.12
11.13
11.14
11.15
11.16
11.17
11.18

An'Analogy

Ordinary Variables

Ordinary Parameters

Pointer Variables

Pointers and Memory
Declaring Pointers

Ordinary and Pointer Variables
Pointers to Simple Variables
Pointers to Arrays

Getting an Answer

Sorting with Pointers
Pointers to Structures
Pointers to Functions

A More General Grid

Arrays of Pointers

Constant Pointers

Summary

Program Ideas

12 Linear Data Structures

12.1
12.2
12.3
124
12.5
12.6
12.7
128

Data Structures

Stacks

Stack Program

Queues

Circular Queues

Queue Implementation
Summary

Program Ideas

13 Recursion and Trees

13.1
13.2
13.3
134
13.5
13.6
13.7
13.8
13.9
13.10
13.11

Factorials

Towers of Hanoi

The Binary Tree

Fixed Binary Trees
Non-Fixed Binary Trees
Dynamic Memory with Arrays
Adding a Leaf to the Tree
Deleting a Node from a Tree
A Binary Tree Program
Summary

Program Ideas

14 Dynamic Memory

14.1

142

14.3
144

Dynamic Data Structares
Dynamic Storage

Dynamic Storage and Trees
Dynamic Memory in Practice

184

184
185
186
187
188
189
191
192
193
194
196
198
200
201
205
206
207
208

209

209
210
214
216
217
219
225
226

227

227
229
232

238
240
246
248
252
255
256

257

257
259
262

i4.5 Summary
14.6 Program Ideas

15 Sheurthand Files and Bits

15.1 Pre- and Post-Incrementation
15.2 Manipulation at Bit Level
15.3 Other Shorthand

154 Command Line Arguments
15.5 - Conditional Compilation
15.6 - Program Units

15.7 Data Files

158 Summary

159 Program Ideas

CS0: The Case Studies .
CS1: Code Maker

CS2: Print-a-Graph

CS3: Tabs-in-Tabs-out
CS4: Risky Dice Game
CS5: Tic Tac Toe

CSé6: TV Plan

A1l The Target Systems

Al.1 Apollo and Sun Workstations

Al1.2 Using a Hard Disk (personal computers)
A1.3 Obtaining Hard Copy

Al.4 Turbo C

A1.5 Microsoft C

A1.6 THINK C

A2 Dealing with Errors

A2.1 Finding Syntax Errors
A2.2 Run-Time Errors
A2.3 Debuggers

A2.4 Program Testing -

Program & Function Index

Complete List of Programs

Our Library (Functions Invented in this Book)
Non-ifo Calls by Case Studies

Non-i/o Calls by Other Programs

General Index

276
270

271

271
273
275
276
277
278
280
282
282

284
285
293
300
310
317
330

339

340
341
341
342
343
343

345

345
346
347
349

351

351
352
352
353

354

1 Introduction

~ Outside World Computer Disk Storage

keyboard | |

E ' C source
' E program
error E : '
messages [@— compiler]
E ' object
‘ ' code
INPUT —_E_" run-time E
' system :
OUTPUT g—— ——— linker

Fig. 1.1 The programming environment

1.1 WHAT IS PROGRAMMING ?

In order to type in and get a computer program working_written in the
language C there are a number of steps that have to be gone through. These
steps are illustrated in Fig. 1.1, and will be explained later in the Chapter.
First it is necessary to place programming itself into a context.

Those new to computing often assume that programming is all to do with
understanding a programming language and so it is, if by programming you
mean translating a detailed design into something that a computer can
process. This activity is called coding. Because computer code often looks
unintelligible to the uninitiated it is tempting to assume that once you have
mastered this activity most of your problems will be over. Whilst the value of
having a thorough grasp of the programming language you are using should
not be underestimated, most commercial problems arise because of poorly
defined specifications and poor designs rather than incorrect coding.

2 Structured Programming into ANSI C

Because programming is only one part of developing a satisfactory end
product the term software is used to imply the entire process. Software
design means correctly specifying a problem, designing the algorithms, or
solution method to solve it, checking that the algorithms will work, coding
them for the chosen language, testing the resulting program and
conscientiously documenting every stage. One should think of programming
into a language rather than in a language. This book is on C but the language
1s less important than the overall approach.

1.2 WHATISC?

All computers can be programmed at two different levels. They can be
programmed using a so-called high-level language or they can be
programmed in a low-level language. Normally there is only one low-level
programming language for any given computer and each kind of computer
has a different low-level language.

Computers are normally programmed in a high-level language because:

(1) High-level languages are easier for people to write in and the
* resulting programs are easier to follow;

(2) Programs written in a high-level language are much shorter, since
each high-level instruction is equivalent to about ten low-level
instructions;

(3) The same, or almost the same, program written in a high-level
language will run on a range of different computers.

C is just one of a number of procedural high-level languages. Other
examples are Pascal, ADA, Modula 2 and Basic.

1.3 ANSI C

The language C was originally designed and implemented by Dennis Richie at
Bell Labs. in the early 70's. His main objective in designing the language
was as a tool for systems programming: for writing such things as Compilers
and Operating Systems. C therefore originated from the concept that a
programming language is a tool for driving a machine (the computer) in the
most efficient manner possible. Other languages treat the computer as an
abstraction and are designed to protect the programmer from needing to
understand how the machine works or even that the machine exists at all. It
could be argued that ultimately that is their failing: sooner or later the
programmer will not only want to dictate what problem the computer is to
solve but also how the solution will be carried out.

Chapter 1: Introduction 3

For many years C remained a relatively esoteric language. The main
reason that this changed is the rise of the UNIX operating system; the first
operating system for mainframe computers that was not tied to a supplier of a
particular computer. In 1983 ANSI® appointed a committee to provide a
modern definition of C. The final version of the standard was not published
till 1990. The significance of the new standard is mainly twofold. Firstly it
includes most of the features that are expected in a modern language; this
makes it possible to whole-heartedly commend it as a language for teaching
programming. Secondly, with an agreed and detailed specification by which
they can be judged, compilers can be checked independently to ensure that
they conform to the standard. '

In recent months there has been a flurry of activity as suppliers have
brought their compilers up to ANSI or near-ANSI compatibility. The
programs in this book should work on all ANSI compilers. They may not
- work on pre-ANSI compilers without minor modification. It would actually
be possible to write programs that will run on any C compiler, but the code
that we would need to use would be obscure and difficult to read.The new
version of the language is still ingeniously simple in concept and satisfying .0
- use. As a universal, go-anywhere do-anything language it can't be beaten and
is unlikely to be beaten for many years to come.

1.4 THE COMPILER :AND PORTABILITY

A program written in C must be processed by another program called a
compiler before it can be used. The compiler translates each group of high-
level instructions into a sequence of low-level instructions. The compiler
itself has to be written in a low-level language designed for the host machine
and therefore you cannot use the same compiler program on different types of
computer. However, in theory at least, you can run the same C program on a
range of computers provided that you re-compile the program for each
computer in turn. The compilation process takes a short while; less than a
minute for even the longest program in this book.

Provided you avoid using facilities that are specific to one particular kind
of computer there is no reason why programs written in the C language
should not be portable (ie. be capable of working on a range of different

computers). The programs in this book have been run on the following
compiler/computer combinations:

v IBM PC running Turbo-C;

) Y ANSI is a trademark of the American National Standards Instituts.

4 Structured Programming into ANSI C

IBM PC running Microsoft C;
Apple Macintosh running THINK C;

Sun workstation running the standard UNIX C compiler;

NSNS S

Apollo workstation running the standard UNIX C compiler¥.

An advantage of writing programs that can run on all five systems is that
you can develop a program on an IBM PC, say, and then run it on a
workstation. This can be helpful if the more expensive computer is not
frequently available. It is usually possible to transfer the program
electronically from one computer to another, so that you do not even have to
type it twice. r «

In the case of the Sun and Apollo workstations there exist compilers that
conform closely to the ANSI standard but they are optional products. This
means that as in the case of the present author the ANSI version may not be
available to you. Should this be the case then the standard C compller (which
does not conform to ANSI) will have to be used and that many of the
programs will need to be modified. Appendix 1 contains a shell script (a
program written in the UNIX language) which does this automatically for
you. You just have to type it in and issue the command sh conven myprg.c
or whatever.

1.5 THE-_SIGNIFIQANCE OF C

The language C is rapidly becoming the most important of the procedural
- languages and is strongly in demand by students and cmployers alike. The
reasons for this are:

= Its portability and the portability of the operating system UNIX with
which it is often associated. The idea is that once having developed a
program written in C that runs under UNIX, it will work on many
other computers, including computers that have yet to be designed.

@ Its versatility and suitability for controlling hardware and software
- almost as effectively as a program written in a low-level language.

Y Turbo C is a trademark of Borland International Inc.
Microsoft is a trademark of Microsoft Corporation.
Apple Macintosh is a trademark of Apple Computer Inc.
THINK C is a trademark of Symantee Corporation.
‘UNIX is an operating system and a trademark of AT&T Bell Laboratories
Sun is a trademark of Sun- Microsystems Inc.
Apolio is a trademark of Apollo Computer Corporation now Hewlett Packard.

Chapter 1: Introduction 5

@ Its modularity and the consequent savings in program writing time
and compilation time.

w Its use as a gateway to X-Windows! and other major software
associated with user interfaces and communications.

Alas, the strengths of C can also be seen as weaknesses. It is a
sophisticated language with a large number of features including an optional
shorthand notation, which has earned it the reputation of being unreadable.
The shorthand notation does not have to be used and is largely avoided in this
book but explained in a later Chapter. The main benefit of the shorthand is
that it can lead to faster execution of programs.

Attempting to describe all the features of the language in detail from the
outset can overwhelm the reader. It also seems unnecessary since many only
have a specialist usage. In this book I have stuck to describing only the most
important features of the language. There are many more advanced books on
C. You may find that you will need to consult not just one but several in
order to satisfy all your eventual requirements.

After reading this book and working with the programming examples,
you should find that you are confident enough to write quite advanced
programs of your own, which use all the main features of the language. You
should also find that you have mastered the essential design ideas which are
needed for successful programming into any language.

1.6 | C++

You may have seen reference to thve language C++, which is currently much
in vogue. C++ is really an extension to C and enables the ideas of Object

Orientated Programming to be used more easily than in C. Pre-requisites to
learning C++ are:

(1) you are already conversant with C;

(2) (even more importantly) you are familiar with the philosophy of
object orientated programming.

Therefore, should you wish to learn C++, you should first read this book
and then get a good book on C++, which explains about the Object Orientated
philosophy before explaining about C++. At the time of writing, it would be
unrealistic to expect portability from C++ programs, and it is arguable

T X-Windows is a file server graphics system based on C functions and is designed
to make graphics independent of the computer, screen resolution and keyboard
being used. X-Windows is a trademark of MIT (Massachusetts Institute of
Technology).

6 Structured Programming into ANSI C

whether C++ would form a suitable pathway to Object Orientated
Programming, anyway. The concepts described in this book would form a
good basis for moving to object orientated programming.

1.7 EDITORS

Before you can enter any of the programs in this book and run them on the
computer that you are using, you will need to use an editor to actually type
them in. Often you will have a choice of editors. For example on
workstations you can use the editor supplied by the workstation vendor or a
UNIX editor such as vi. In the case of personal computers, an editor is

"usually supplied along with the programming language or you can use your
favourite editor or word processor. Should you choose the latter you should
save your work as plain text.

Editors and their use are outside the scope of this book but it is worth
mentioning that the global search-and-replace facilities that are available on
almost all editors are very useful for changing the names of variables, and
that copy-and-paste is useful for speeding up the entry of large numbers of
printf() statements and ensuring that function names and parameter lists are
the same in all places.

When you come to save your program on to disk you have to give it a
name. Usually the name is an alphabetical word of say six to ten characters
and is followed by .c. The .C is called a file extension and is partly there in
order for you to distinguish between different types of file (the name used to
describe a single set of information which is saved on to disk such as a
computer program, a set of data or a piece of text such as this book). For
most compilers the .C extension is obligatory or the compiler will not process
your program at all. Of course, you can always re-name any file so that it has
the nght extension.

1.8 THE KEYBOARD

One of the first 1mped1ments to programming is finding your way round a
keyboard.’ Programmers who can touch-type are at an advantage. By using
one of the typing tutor programs on the market the skill can be mastered
within three weeks by conscxennous‘y performing two fifteen-minute
exercises each day.

The alphabetic characters, space bar and digits are all standard among

computers. There are a number of non-aiphanumeric. characters that are used
in C. Since it can take a while for the beginner to find these keys, some of

which vary from computer to computer, their positions are given in Fig. 1.2.

There are two single quote characters on most keyboards and the diagram wiij

