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Message from the General Chair

On behalf of Enric Trillas and myself, I wish to welcome you to Santiago de
Compostela, the site of the 26th International Symposium for Multiple-Valued Logic. This
symposium is sponsored by the University of Santiago de Compostela, the Commission for
the Fifth Centennial Anniversary of the University of Santiago de Compostela, and by the
IEEE Computer Society. The conference would like to gratefully acknowledge the generous
support given by the General Director of Scientific and Technical Research (Ministry of
Education and Science), the Honorable Council of Santiago de Compostela, and the
Government of Galicia.

We would also like to recognize all of the special efforts made by the local
organizing committee with special thanks to. Alejandro Sobrino, Senen Barro, and Alberto
Bugarin, whose dedicated efforts have definitely contributed to the overall success of this
symposium.

ISMVL’96 would especially like to honor the memory of a great Polish
mathematician, Professor Helena Rasiowa. As in the past, our symposium has attracted
researchers from a wide variety of disciplines including mathematicians, logicians,
engineers, and computer scientists, helping to continue making this a dynamic and exciting
gathering. The credit for putting together this exciting and thought-provoking program goes
to the organizing and program committees. The following people graciously served as
program chairs for their respective regions: Charles Silio for the Americas, Claudio Moraga
for Europe and Africa, and Tsutomu Sasao for Asia and Australia.

We also wish to thank Regina Spencer Sipple of the IEEE Computer Society Press
for her diligent work in publishing this volume.

Dan A. Simovici
ISMVL-96 Symposium Co-Chair
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Message from the Program Chair

Charles B. Silio, program co-chair for America, Tsutomu Sasao, program co-chair for
Asia and the Pacific, and I welcome you to the 1996 International Symposium on Multiple-
Valued Logic in the frame of the celebrations of the 5* Centennial of the University of Santiago
de Compostela, Spain.

The technical program of selected contributed papers consists of 46 papers by 92 authors
currently working in 17 different countries. The ISMVL ’96 Program Committee gratefully
acknowledges the important support given by one hundred of referees from 14 countries. These
referees prepared written reviews of each submitted paper and had to work under extremely tight
time schedules.

Sessions of contributed papers deal with exciting innovations and research in Algebra,
Logic, Switching Theory, Devices, Artificial Intelligence, Fault Modeling and Diagnosis, Soft
Computing, Logic Design, and Decision Diagrams. This breadth of related topics reflects the
diverse interests of the mathematicians, logicians, engineers, philosophers, and computer
scientists who have come together to share their common interest in multiple-valued logic and to
participate in this symposium.

In addition to the 46 contributed papers, we are pleased to present lectures by two
renowned keynote speakers: Claudi Alsina, of the Open University of Catalunya, will discuss
Connectives in Fuzzy Logic, and Lotfi Zadeh, of the University of California at Berkeley, will
lecture on Inference in Fuzzy Logic via Generalized Constraint Propagation.

Moreover, a special session has been dedicated to honor the memory of the late
Helena Rasiowa. The invited speakers for this session are G. Malinowski, Lédz University,
Poland; J.M. Font, the University of Barcelona, Spain; and Tom Sales, Universitat Politécnica de
Catalunya, Spain.

We sincerely hope that you enjoy the thought-provoking program we have put together
and that you will find the motivation to return in the future for more research and camaraderie.

Welcome to ISMVL ’96!

Claudio Moraga
Program Chair
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As You Like Them: Connectives in Fuzzy Logic

Claudi Alsina

Universitat Oberta de Catalunya
Avda. Tibidabo 39, E08035 Barcelona, Spain

Abstract

We review the question of which connectives (con-
junctions, disjunctions and negations) may be of in-
terest in Fuzzy Logic. Several alternative structures
to the classical boolean algebras are presented and dis-
cussed. We show how techniques from the theory of
functional equations may help to clarify the problem
of choosing appropriate connectives or refusing inade-
quatle operations.

1 Introduction.

In this work we would like to review a very basic
problem of Fuzzy Logic: which conjunctions, disjunc-
tions and negations may play a crucial role. While
in classical set theory it is obvious the importance of
boolean algebras, in the context of fuzzy sets, several
alternative structures may be considered.

In the last thirty years a lot of literature in Fuzzy
Logic has been devoted to present various approaches
to the problem of determining logical connectives.
These works have benefited from results arising in the
theory of functional equations and in the field of prob-
abilistic metric spaces. So today’s problem is, mainly,
to choose which families of connectives may be of in-
terest and to clarify why some elections make sense
and others do not merit consideration. Our aim here
is to present a short survey of what has been reached
and what requires further analysis.

2 Fuzzy Sets, Functional Equations

and Probabilistic Metrics

Since 1965, when Lotfi Zadeh ([24]) founded the
theory of Fuzzy Sets, there has been an explosion of
interest both in the mathematical aspects of the the-
ory and in the practical impact of it. Fuzzy Sets theory
has been using a good deal of classical mathematical
notions but, what is more important, the theory has
motivated the development of interesting new mathe-
matical machineries and results. The case of connec-
tives in Fuzzy Logic is a clear example of a problem
which has been a stimulating focus for mathematical
research.

The field of Functional Equations goes back to an-
tiquity, if one considers some old geometrical defini-
tions of curves, but began its real development almost
simultaneously with the appearence of the modern

0-8186-7392-3/96 $05.00 © 1996 IEEE

concept of function. Nevertheless the basic founda-
tion has been made by J nos Acz 1, whose celebrated
book [2], widely known after 1966, has become the
very basic reference in the field (see also [3]). Funec-
tional equations are tools for modelling a wide vari-
ety of practical problems and may be used for solving
many questions formulated in terms of functional rela-
tions. Let us mention here that functional equations
may be used to define classes of membership func-
tions, fuzzy relations, fuzzy equations, etc. As we will
see later the results on the associativity equation have
become a basic tool for the study of connectives.

In 1942, Karl Menger (see [15]) introduced the pi-
oneer ideas of probabilistic metric spaces. Berthold
Schweizer and Abe Sklar began, after 1960, to de-
velop this theory but found immediately the need to
work with semigroups in real intervals and in the space
of probability distribution functions. These problems
motivated Schweizer and Sklar to deal with special
classes of solutions of the associativity equation. Many
other people, following results of Schweizer and Sklar,
became later interested in the semigroups called t-
norms and used them as generalized logical connec-
tives.

Thus it is interesting to note that in the 60’s three
different fields like Fuzzy Logic, Probabilistic Metrics
and Functional Equations benefited each other from
problems related to fuzzy structures. Since those days
the relations have shown to be an interesting source
of new mathematical results.

3 Some remarks on a class of associa-

tive functions

The functional equation of associativity was first
considered by Abel in 1826. This work motivated a.
question included by David Hilbert in his celebrated
1900 address. Between 1909 and 1948, several repre-
sentation theorems were found by L.E. Brouwer and
E. Cartan and between 1955 and 1963 several results
were given, in the context of topological semigroups,
by A.D. Wallade, Faucett, Mostert and Shileds, Clif-
ford, Fuchs, etc. But the fundamental representation
theorem for associative functions was proved by Acz
1in 1949 (see [1], [2], ﬁ]) and a basic extension was
given by Ling in [13]. The literature devoted to various
generalizations and extensions to the original cases of
Acz 1 and Ling is quite impressive ([4]).

The study of the triangle inequality for probabilistic



metrics induced to Schweizer and Sklar to study the
following concepts:

Definition 3.1 A t-norm is a two-place function T

from [0,1] x [0,1] into [0,1] such that the following

conditions are satisfied for allz,z',y,y and z in [0,1]:
(i) Associativity: T(z,T(y, z)) = T(T(z,y), 2);

(ii) Commutativity: T(z,y) = T(y, z);

(115) Monotonicity: T(z,y) < T(z',y’) whenever z <
e andy<vy;

(iv) Unit element: T(z,1) = T(1,z) = z;
(v) Null element: T(z,0) = T(0,z) = 0.

The most celebrated t-norms are

Min z,y) = Minimum {z,y},
Prod (z,y) = =z-y,
W(z,y) = Max(z+y-1,0)

Definition 3.2 A strict involution or strong
negation on [0,1] is a function N from [0,1] onto
[0,1] which is strictly decreasing, N(0) =1, N(1) =0
and No N =j.

The classical strong negation is 1 — j, ie., (1 —
Nz)=1-=.

Definition 3.3 A t-conorm is a binary operation S

on [0,1] such that S*(z,y) = 1-S(1 —z,1-y) is a
t-norm.

Let us quote a fundamental representation theorem
for t-norms in its latest version:

Theorem 3.1 Let T be a two-place function from
[0,1)? into [0,1] such that:

(i) T(z,0) = T(0,z) =0,
(i) T(1,1) =1,
(113) T is associative,
(iv) T is jointly continuous.
Then T admits one of the following representations:
(a) T(2,y) = Min (z,y);
(5) T(z,y) = tD(t(z) + t(y)), where ¢ is a contin-
uous and strictly decreasing function from [0,1]

into R*, with t(1) = 0 and t(~1) is the pseudo-
tnverse of t;

(c) There ezists a countable collection ([an,bs]) of
non-overlapping, closed, non-degenerate subinter-
vals of [0,1] and a collection of t-norms T,,) each
of them representable in the form (b) such that

if (z,y) in [a,,b,)? for some n,

Min (z,y), otherwise.

an + (b — an)T, (3%, g2 ),
T(z,y) =

This theorem shows that there is a wonderful col-
lection of t-norms which have interesting representa-
tions for computational purposes and that, indeed, if
the operation is jointly continuous there is no need to
require neither monotonicity nor commutativity.

The previous theorem yields a corresponding rep-
resentation for all continuous t-conorms. A repre-
sentation for strong negations in the form N(z) =

f~1(1 - f(z)) was given by Enric Trillas ([18]).

4 Connectives in Fuzzy Logic

Given a nonempty base set X of elements of interest
we can consider the boolean algebra (P&X ),N,U,C).
This structure has a correspondence with the classi-
cal logic approach to disjunctions, conjunctions and
negations of propositions and, by identifying subsets
of X with their characteristic functions, we may say
that the boolean operations on P(X) are based upon
the trivial boolean algebra ({0, 1}, Min, Max, 1 — j).

Since fuzzy subsets of X will be functions x from
X into [0, 1] and we would like to consider, in a very
general framework, pointwise operations, we find im-
mediately the need to face the problem of which bi-
nary operations 7" and § in [0, 1] and which mappings
N from [O,}\; into [0,1] are such that the structure
(0,1],T,5,N) is “satisfactory” or “convenient”. If
it is possible to find a good answer (or several!) to
this problem, then the basic structures in Fuzzy Logic
would be clarified.

The initial proposal of Zadeh for the structure
(T, S,N) was to consider (Min, Max, 1 — i), e, to
perform the intersection, union and complements of
tuzzy sets by means of the operation

Gaviae) = Mataindh
pa(z) = 1—pa(z).

This is a convenient extension of the classical case
but some of the boolean properties are lost, e.g., paV
Ba#land pg Aply #0.

It was quite clear from the very beginning that for
fuzzy sets it would be necessary to consider structures
less restrictive than the classical boolean case. An
easy analysis of the situation showed that strong con-
ditions like idempotency (uq Apy = paVpa =p,)or
distributivity would restrict the possible operations to
the couple (Min, Max), which did not satisfy, in 1(2,1],
relations obviously true in {0,1}. Since (Min, Max,
1—j) was a particular case of a triple (T,5 N ) with T
a t-norm, S a t-conorm and N a strong negation then
several authors and, in special, Trillas’ school, began



to study the triples (T', S, N). Since the representation
theorem for t-norms was an essential tool, all proper-
ties of continuous t-norms were considered, even the
non-decreasing character of T', which in origin was re-
quired in order to deal with probability distribution
functions and in the fuzzy context was assumed under
the idea that t-norms would respect the usual point-
wise ordering of fuzzy sets. In that moment the rep-
resentation theorem without monotonic assumptions
was not known.

5 On some classes of basics triples
We begin with the following:

Definition 5.1 A basic triple (T, S, N) is given by
two binary operations T and S on LO,? and a map-
ping N : [0,1] — [0, 1] such that the following nine
properties are satisfied, for all z,y and z in [0,1]:

(1) T(x, T(yv z)) = T(T(z’ y)v z);

(2) T(z’ y) = T(y, z)"

(3) T(z,1) = z;

(4) T(z,0)=0;

(5) S(z, S(y, z)) = S(S(z,y)sz);

(6) S(=,y) = Sy, z);

(7) S(=z,1)=1;

(8) S(z,0) = =z;

(9) N(N(z)) =z, N(1)=0, N(0) = 1.

Thus a t-norm 7, a t-conorm S and a strict involu-
tion N constitute a basic triple (T, S, N). When T and
S are jointly continuous as two-place functions and N
is continuous we have for (7', S, N) the representations
given above.

But let us note that if no continuity is involved or

no monotonicity is required then we can have basic
triples which can not be represented in an easy way.

Example 5.1 Consider the triple (T, T*,1—j) where
T is the binary operation defined by

z, ify=1,
Y, fz=1, ,
Te,) = { Min (&:0), (s:9) € 0,10 Q] u [io, 1\
,11nQ]",
0, otherwise,

Then we have a basic triple such that T'(z,z) =
for all z in [0,1] but T" is nowhere monotonic on (0, 1)2.

Example 5.2 Consider (T, T*,1—j) where T is given
by
Min (z,y), z=1lory=1,

_ zy/4’ 0Sz,y$1/2n
T(2,9) =\ zy/2, 1/2<z,y<1,
zy/2\/§, otherwise.

Then T is a discontinuous strictly increasing
Archimedean t-norm with discontinuity points on the
interior points of the unit square.

Let us consider now basic triples which satisfy some
additional conditions.

Definition 5.2 A De Morgan triple s a basic
triple (T, S,N) such that S and T are N-dual, i.c.,
we have the additional property

(10) N(T(z,y)) = S(N(z), N(y)) or
(10°) N(S(z,y)) = T(N(z), N(y)).

The study of N-duality was made by Garcia and
Valverde in the case of continuous t-norms and t-
conorms.

Definition 5.3 A Lukasiewicz triple is a De Mor-
gan triple such that the following condition holds
(11) T(z,y) = 0 if and only if y < N(z).

Let us note that condition (11) and the assumed
N-duality of S with respect to T, yield that (11) is

equivalent to
(11’) S(z,y) = 1 if and only if N(y) < =z.

It is interesting to note that Lukasiewicz triples are
the natural solutions to the orthomodularity property

T (z,S(y,n(z))) = y, whenever y < z,
or to the strict local modularity:
T (z,5(y,2) = S(v, T(z, 2)),
whenever y < z and N(z) < z < N(y).

Definition 5.4 A basic triple (T,S,N) will be said
idempotent if for all z in [0,1] we have

(12) T(z,z) = z;
and
(13) S(z,z) = =.

If T is a t-norm then (12) yields " = Min and
if S is a t-conorm from (13) we deduce § = Max.
Thus while idempotency is a natural rich property for
some classes of operations in [0,1] like the averaging
functions (means), it is quite unnatural for associative
functions with boundary conditions related to the end
points of [0,1] and with some monotonicity. We may
remember here that even George Boole gave special
arggnllents to include this property in his “algebraic”
model.

But if we have basic triples with no monotonicity
required then we may find some bizarre solutions.



Example 5.3 Let T be a binary operation in [0,1]
defined by

o o]
T(z,y) = E Tnyn/2",
n=1
00 o0
where 2 = ) 2,/2", y = Y yn/2" are well-defined
n= n=1
dyadic expansions of z, y with z;, 3 € {0, 1}. Consider
S(z,y) = T*(=,y). Then (T, S,1-j) is an 1ddempotent
asic triple.

Note that between Min and Max we may find
also interesting associative, non-decreasing, continu-
ous, commutative binary operations which satisfy (12)
or (13) but the boundary conditions of a basic triple
cannot be assumed. One example is to define, for any
cin (0,1):

Min (z,y), ifz,y<e,
Tc(-'B,y)= Max (3,!/), ifz,yZC:
c, otherwise,

and consider (7, T,1 - j).

Definition 5.5 A basic triple ;T, S,N) will be said
distributive if it satisfies the following iwo conditions
for all z,y and 2 in [0,1]:

(14) T (2,5(y, 2)) = S(T(z,y), T(=, 2)),

and

(15) S(=,T(y, 2)) = T(S(z,y), S(z, 2)).

Note that (1%) yields §(z,z) = z and (15) implies
T(z,z) = z. Thus if T is a t-norm and S is a t-
conorm, only (Min, Max, N) is a distributive triple.
But in the case of a basic triple with no monotonicity
we may find other solutions, e.g., the operations given
above in Example 5.3 and those given later in Example
6.1.

Note that basic triples have been used in Fuzzy
Logic in various situations ([5], [12], [14], [19], [20]):

(a) As logical connectives to be used for making con-
junctions, disjunctions and negations;

(b) To define implication functions, e.g.,

Kz,y) = S(n(z), y)O -
, = s y T S
merdl = il <y

(¢) To model some general “rules”, e.g., the modus
ponens inequality

T(z,I(z,y)) <y
(d) To define special properties of fuzzy relations,

e.g.,
T (E(z,y), E(y, 2)) < E(z,2),

which corresponds to the T-transitivity of a rela-
tion E in [0,1].

6 On Frank’s triples

In 1979, M.J. Frank proved a remarkable result
which has a lot of implications for the theory of semi-
groups on an interval, for the study of operations in
the space of distribution functions and, as we will see,
for the foundations of fuzzy logic operations. Frank’s
result concerns the study of which continuous t-norms
T and t-conorms S may satisfy the functional equation

T(z,y)+S(z,y) =z+y. (¥

Theorem 6.1 A continuous t-norm T and a t-
conorm S satisfy equation (*) if and only if the couple
(T, S) has one of the following forms:

(1) To(z,y) = Min (z,y), So(z,y) = Maz (z,y);
() Ti(z,y) = Prod (z,y), Si(z,y) = Prod *(z,y);
(1155) Too(2z,y) = W(2,9); Seo(,y) = W*(z,y);

v s = 10 1 T — Sv - S - ]
) g"ﬁzssg oo,lsgi[l,+sg€z,y) 1=)(T§(£,3{( D)

(v) T is representable as an ordinal sum of t-norms
each of which is a member of the family Ts(0 <
S < 0), and S(z,y) =z +y - T(z,y).

It is interesting to note the following facts concern-
ing the solutions of equation (*):

(a) All solutions are operations between W and Min
which are, indeed, copulas;

(b) All solutions in the family Ts, with 0 < S <
oo, are smooth and have convenient differential
properties;

(c) As a consequence of the equation (x) all
Archimedean t-conorms S,(z,y), 0 < 8 < oo,
given by ¢ + y — Ts(z,y) are at the same time
the (1 — j)-duals of T}, i.e., Ts satisfy the equa-
tion:

z+y—T(z,y)=1-T,(1—2z,1—y)."

(d) Equation (*) can be presented in the form
T(z,y)+S(z,y) = z+y = Max (z, y)+Min (z,y),
whence

Min (z,y) — T(=z,y) = S(z,y) — Max (z,y),
and this is an important property to be required.
Thus we will consider from now on the following

Definition 6.1 A basic triple (T, S, N) will be said to
be a Frank’s triple if it satisfies equation ().

We have seen above all Frank’s triples determined
by continuous t-norms and t-conorms. The following
example shows that very sophisticated Frank’s triples
may be constructed without continuity or monotonic-
ity properties.



Example 6.1 Let (A,) be an interval filling sequence
00
in [0,1], i.e., Ap > Apyy forall n, 3 A, =1 and for

n=1
any z in [0,1] there exists a unique factorization of z

(2]
in the form z = Y~ z, )\, with z, € {0,1}, for all n.
n=l
Let us define T) and S, as binary operations in [0,1]
given, respectively by,

Ta(z,y): = Y Min (n,¥n)An,
n;l
S,\(-‘F,y)l = ZM&X (‘-'?myn)/\m

n=1

00 o0
whenever z = Y zoAs and y = Y ynls.
=1 n=1
Then T)\ anc'; S) are non-monotonic operations such
that ([0, 1], T}, S») is a distributive lattice, T (z, y) +
Sx(z,y) = z+ y and S, is not an N-dual operation of
T) for all negations N.

7 On non-dual basic triples

In some cases it may be natural to deal with basic
triples (7', S, N) where some relations link T, S and N
but no direct duality between T and S is possible.

Definition 7.1 A basic triple (T, S, N) will be called
a normal triple if the following law holds for all z,y

in [0,1]:
[ ] S(T(z, y),T(z, N(y))) =z

In the case where T is a continuous t-norm, S is
a continuous t-conorm and N is a continuous strict
involution it has been proved by this author that the
three unknown functions can be represented in the
form

S(z,y) = sC1(s(z) +s(y)),
T(z,y) = sV (s(z)- s(y)),
N(z) = (1 - s(2)),

where s : [0, 1] — [0, 1] is a continuous increasing ad-
ditive generator for S, with s(1) = 1, 5(0) = 0.

It’s interesting to note that the solutions obtained
are not N-duals and, indeed, since T is strict and S is
a non-strict Archimedean t-conorm, T" and S cannot
be n-duals for all strong negations n.

Alsina and Trillas &5]) ave recently proved the
following result related to the study of conditional and
implication functions

Theorem 7.1 Let T be @ non-strict Archimedean 1-
norm, i.e., T(z,y) = t-D(t(z) + t(y)) with t(0) = 1.
Let N(z) = t=Y(1 — t(z)) and let S be a continuous
t-conorm. Define

Ti(2,y) :=T(z,S(N(z),9)),

Then Ty is a continuous t-conorm if and only if:

(i) i =T, S = Maz;
(") Ty = Min, S(.’B, .'/) = N(T(N(:B), N(y))):

(i) Ti(z,y) =t~ (1 - (1 — t(z))(1 — t(v))),
S(z,y) =t~1(t(z) - t(y));

(iv) Ty(z,9) =t~ (T3)a (4(=2), (1)),
S(z,y) =t (Ta (1(2), 1())),

where a # 1, a > 0 and T, are Frank’s t-norms
Ta(2,y) = logs (1 + (o — 1)(e* — 1)/(a - 1)).

This theorem has a special value in our context
since it shows how non-dual operations may appear
and how Frank’s family plays a relevant role.

8 Some final remarks

We have seen that there are, at least, good mathe-
matical reasons to say that the most interesting basic
triples (T, S, N) satisfying continuity and monotonic
properties are Frank’s triples and normal triples,
depending the choice on the requirement of N-duality.
But various examples have shown that if one forgets
about continuity or monotonicity there are still many
open problems: to characterize the various classes of
triples. In some sense the realm of topological semi-
groups in closed real intervals has been essentially in-
vestigated. But without continuity, only pathological
examples may be seen today. Since many member-
ship functions have a finite number of values, such
semigroups merit further research.

The study of the Hyers-Ulam stability of the equa-
tions giving the properties of the basic triples (T, S, N)
may constitute also a rich field of analysis. In particu-
lar the characterization of operations T satisfying the
inequality

IT(z, T(y, 2)) - T(T(2,y), 2)| < e,

for all z,y, z in [0,1] and for a given ¢ > 0, may be an
attractive problem in the agenda for the time to come.

Finally let us make some considerations on the “real
role” of fuzzy connectives. In the classical boolean set-
ting conjunctions, disjunctions and negations are used
either to build new propositions or to perform set op-
erations. If we look at the case of probability what is
needed is the evaluation of the probability of unions
or intersections or bounds for such probabilities, i.e.,
conjunctions and disjunctions are “measured”. In the
case of Statistics there is a special attention to random
variables and their distributions and one studies oper-
ations between random variables as well as operations
between distributions (being extremely important the
study of joint distributions).

We believe that connectives in Fuzzy Logic present
problems similar to those found in Statistics. For
example, in many cases we can associate to vague
predicates A, B some measures my,mp : X — R+
and we can consider two fuzzy numbers Fu,Fp :
I_Z"' — [0, 1; and the corresponding membership func-
tions pa(p) = Fa(ma(p)), wm(e) = Fa(ma(p).




