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ACOUSTIC SCATTERING BY SUB-SURFACE INHOMOGENEITIES

D.L.BERRY(1), S.N.CHANDLER-WILDE(2) AND K.ATTENBOROUGH(1)

(1) Facurry or TECENOLOGY, OPEN UNIVERSITY, MILTON KEYNES, MK7 6AA
(2) DEPARTMENT OF MATREMATICS, COVENTRY POLYTECENIC, COVENTRY, CV1 5FB.

INTRODUCTION

The application of the boundary integral equation (BIE) method to problems of acoustic scattering
is widely known ([1] - [3]). The method has been used, in the context of outdoor sound propagation,
to predict the propagation of acoustic waves over a plane of homogeneous impedance, perturbed by
the introduction of a region of inhomogeneous impedance ( {4, [5]), or by the introduction of a noise
barrier (6]. Here, the BIE method is applied to the problem of the prediction of the acoustic field
due to a point source in a homogeneous quiescent atmosphere, above a homogeneous rigid porous

half-space containing a rigid inhomogeneity.

THEORY

THE BOUNDARY VALUE PROBLEM

The geometry is shown in figure 1. An obstacle, labelled S, with smooth, rigid surface 85 is embedded
in a porous half-space, characterised by a complex impedance Z; and a complex wavenumber k;. The
upper half-space, denoted U, , contains air, and is assumed to be characterised by real impedance and
wavenumber, Z, and ky, respectively. To define the other notation in figure 1, U_ := R3\(5UT,)
denotes the porous medium, and T' = {(z,y,2) € R3]z = 0} the boundary between the two half
spaces. It is intended to determine the value of the complex acoustic pressure p(r,rp), at points
r € R3 given a source point ro € Uy, when the plane surface, T, is insonified by a monofrequency
point source. The complex acoustic pressure is assumed to satisfy the following boundary value

problem:
an inhomogeneous Helmholtz equation for r € U,
(V2 + k})p(r, ro) = 6(r ~ ro); (1)
L.
Source, 5

LIV s

k2 lp

u

Figure 1: The physical situation
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the Helmholtz equation for r € U_,
(V2 + k3)p(r, v0) = 0; (2)
the Neumann boundary condition for r € 35, for a rigid scatterer,

8p(r, ro) )
“an() = O @)

continuity of complex acoustic pressure, for r € ',
p+(r,ro) = p_(r, ro); (4)
continuity of normal velocity, for r € T,

8p+(r,ro) _ 9p_(r,ro)
%z - 3z ' (5)

and Sommerfield’s radiation conditions in U4 and U_. In the above, a time dependence e~'* i3
assumed and suppressed; p(r,ro) denotes the complex pressure at r = (z,y,2) due to a source at
ro = (Zo, Yo, 20); the subscripts +/~ denote the limiting values of a function as ' is approached
from the U, /U_ side; n(r) denotes the normal to the surface 8S directed into S at point r; V? =
8%/8z% + 87/8y® + 8°/82* denotes the Laplacian; and a is defined by, a = (Z3k;)/( 2k, ).

REFORMULATION AS AN INTEGRAL EQUATION

To formulate the integral equation, the solution to the following simpler problem is required. Let
the Green's function G(r, ro), satisfy the following boundary value problem, for each rp € R3\T:
an inhomogeneous Helmholtz equation for r € U,

(V2 + k})G(r, ro) = 6(r - ro); (8)
an inhomogeneous Helmhoitz equation forre U_,

(V2 + k3)G(r,ro) = ab(r ~ ro); 7
jump conditions forr € T,

G4(r,ro) = G_(r,r0); (8
and 9G.(r,r0) _ 8G_(r,r0)
+\Ir, ro _ -{r,To)

T3z - 8x '’ (@)
and Sommerfield’s radiation conditions in U, and U_. Note that in the case when no obstacle is
present,

P(x, ro) = G(r, ro), (10)

for r € R® and ro € U,; but G(r,ro) is defined also when ro € U_. In physical terms, G(r,ro)
is the complex acoustic pressure at point r in a medium consisting of two half spaces of different
impedances and/or propagation constants due to a simple point source at point rp of unit volume
strength; the point ro may lie in either half space. The factor a, included in equation (7), ensures
that G satisfies reciprocity.

190 Proc.l.O.A. Vol 11 Part 5 (1989)
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To obtain an integral equation, consider regions V; and V3, V;/V; consisting of that part of U, /U.
contained within a large sphere of radius R, centred on the origin, and the boundary, T, but excluding
small spheres, o, and o,, of radii £, centred on r and ro. The interiors of the spheres o, and o,
are excluded so that the conditions of Green’s second theorem are safisfied by p and G in regions
Vi and V;. Applying Green’s second theorem to regions V; and V3, the following two equations are

obtained:
3G(r,, 1) 3p(r,, ro) _
/M(P(rnro)-m - G(l'ur)Tr')o)dJ(h) =0, (11)

fori= 1,2, r9 € U, and r € R3. Letting the radius of the small spheres, ¢, tend to zero, and the
radius of the large hemisphere, R, tend to infinity, and using the Sommerfeld radiation conditions
satisfied by p and G, these two equations become

3G 4(r,, 2 s
mi(Dp(,00) = G(rar) = [ pa(ra ) 22800 g, nZ2elural gy )
r 2 82,
where xy(r):=1forre Uy, 1/2forre T, 0forre U_US; and,
_ 9G_(rs,r) 3p_(r,,ro) dG(r,,r)
ary(r)p(r, o) = /rp-(l‘.,!‘o)T G—(rnl‘)Td-’(l‘-)+/;sp(l'ul‘o)md~’(r:),

(13)
where x3(r):=1forre U_, 1/2 for r € T'(J85, 0 for r € U,. Multiplying equation (12) by a, and
adding this to equation (13) and making use of the conditions on T' satisfied by p and G (equations
(4), (5), (8) and (9)), equations (12) and (13) can be combined to give the following equation, for
ro € U, and r € R3:

ax(e)p(, o) = aGlro.r) + [ plen o) e las(e,), (14)

where x(r) := 1 for r € R®\§, 1/2 for r € 8S. Provided Imk; > 0, as argument similar to ({1], p.103)
shows, this BIE has a unique solution, so that this formulation of the problem is equivalent to the
boundary value problem, equations (1) to (5). The condition Imk; > 0 is satisfied since k, is the
propagation constant for a porous medium.

SOLUTION OF THE INTEGRAL EQUATION

In general, a closed form solution of equation (14) is not possible. A numerical solution can be
obtained by a simple boundary element method as follows. Firstly, p is determined on 85 by
forming and solving a set of linear equations. Once p on 85 is found, the value of p at any other
point, r € R3\S can be determined by performing the integral of equation (14).

Equation (14), restricted to r € 85, is a weakly singular Fredholm integral equation of the second
kind. A difficulty in the numerical solution of this integral equation is that the kernel function tends
to infinity as - approaches r,. This difficulty is resolved by applying the modification of Burton (7].
For r € 85, equation (14) is written:

+p(r, ro) /85 a%((:—’)r)ds(r.) (15)

Proc.L.O.A. Vol 11 Part 5 (1989) 191
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where Go(ry,r) = —a/(4x|r, —r|) is the principal singularity of G(r,,r). From Gauss’ theorem, the
last integral can be integrated exactly, giving:

300(!',, l') _ a
/;S an(r’) d"(rs)— _E, (16)
for r € 35. Hence, equation (15) can be rewritten as:
- 8G(r,,r) 8Go(r,, )
ap(r, ro) = aG(ro, ) + /;SP(F:»YO)W o(r, ro)-a—n(;-.—)—ds(r,). (17)

According to Burton (7], the new integrand, taken as a whole, remains finite as r approaches r,.
Now, if the surface 85 is split into N boundary elements, 85,,8S5,,...,85y, from equation (17) it
follows that:

v
ap(rj,ro) = aG(ro,r5) + 3 Iy, (18)
{=1

for j = 1(1)N,where r; is the midpoint of element 85;, and:

8G(r,,r;) 8Go(r,, r;)
I = / s = i — .
4= L »(r,, ro) Bn(r)) p(r;, ro) n(e.) ds(x,) (19)
For j # I, the approximation can be made that:
~ 9G(ry,r;) . y0Go(ri,r5)
I = 4 (P(l‘l»l‘o)"a—n(;)- - P(l‘,,l‘o)—bm—)—) , (20)
where A; is the area of 85, and for j = [:
Ii=0. (21)

Thus, the following linear equatious are satisfied approximately by the unknown values p(r;,ro):

N
ool r0) = aGlro) + 3 ar (o ro) 5 gy ) 2HEEN)

=1(1#5)

for 7 = 1(1)N. These approximately satisfied set of N linear equations for the values of p at the
raidpoints r; of 8S5; can be written in the standard form:

N
2 ajip(ri, ro) = aG(ro, r) (23)
=1
for 7 = 1{1)N, and where:
. 8Gy(r;,r;) 8G(ry, r;)
@i = e+ LA i - (1~ 6y) KD 4
¢] .'_-_I(Zi;ej) On(ry) J it = ( i) Bn(r)) l (24)

where 6;; is the Kronecker delta.

If the obstacle is axisymmetric about an axis perpendicular to the surface ' and if the elements are
numbered as indicated in figure 2, the matrix [a;] is Block - Circulant of order N = m x n, with
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Figure 2: Element configuration for a sphere, including numbering system for the elements.

block entries of order m. A definition of this matrix type may be found in Davis {8]. The solution
of equation (23) can be performed using the subroutine CGSLC of the Toeplitz package, from the
Argonne National Laboratory [9]. The value of p at any point elsewhere in r € R3\S | is then given
approximately by substituting the calculated values of p on 85 into:

N
ax(r)p(r,ro) = aG(ro,r) + Zp(r“ ro)%‘;’_“;)m, (25)

I=1

where x(r) := 1 for r € R%\S, 1/2 for r € 85.

THE GREEN’S FUNCTIONS AND IMPEDANCE MODELS

The Green’s function can be expressed exactly as an inverse Hankel transform ([10], equation (1)),
which can, by various transformations, and by deformation of the path of integration, be expressed
in a form more suitable for numerical integration. But, for the calculations performed in this paper,
the following simple approximation was used:

€ erklr—ro| erklr-ri)
G(r, X - R
(r,ro) 4r { {r — rof 4 fr~rh) (26)

when r and ro are both on the same side of the interface, where r) denotes the geometrical image
point of ro in the plane T', k = k;(k3) and € = 1{a) if rq is in Uy(U.), and R, denotes the plane
wave reflection coefficient:

Ry = (acosh — (n® — sin?0)%)/(acost + (n? — sin?g)}) (27)

(Re{(n? - sin8)}} > 0) if the source and receiver lie in Uy, where 8 = cos™!(|z + zo]/|r — r}|) is the
angle of incidence, and n = k3/k; is the refractive index. If the source and receiver lie in [/_ then
R, is given by (27) but with o and n replaced by a~! and n~! respectively.

To calculate G(r,rs) when ro € Uy, r € U_ the approximation of Richards et al ({10], equation
(25)) has been used, i.e.:

G(r,ro) = ezp [—iklz(nz - sin’&)i’] G(rr, ro) (28)
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Recetver position Boundary Element Method Classical Theory
/m Pscattered / Pdirect Pscattered/ Pdirect
x y m=8 n=16 [m=16 n=32{ m=32 n=64
h=01963m { h=0.0982m h = 0.0491 m

1 [} 0.0057 ~ 058531 | 0.0051 + 05824 i 0.0050 + 03817 i <0.0045 « 0.5808 1

[V 1N <0.2030 ~ 0.08G¢ 1 | -0.1919- 00804 i 0.1971 - 0.0805 i -0.1965 - 0.0807

0 1 0.0693 + 016261 | 0.0645+01609i | 00635 +0.1606 i 00628 + 0.1606

BV F I V¥ 02486 - 0.0798 i | D.2455 + 00762 i 2449 - 0.0754 § 0.2448 - 0.0735 1

-1 0 00391 -0.2797i | 0.0426-02761i | -0.0434-02754i [ -0.0437-02754

Table 1: Comparison of the values of the ratio of the scattered field to the direct field using the
boundary element method and classical theory for a rigid sphere of radius 0.5m, in an infinite
medium of propagation constant k = (5.0 + 0.05:¢)/m. For the boundary element method, the source
is taken at z = —1000.0m.

where rr = (z,y,0) denotes the point on I' directly above r and § = cos~Yzo/|rr - rof). When
using the approximation (28), G(rr, ro) is approximated by equation (26). The approximation (28) is
stated [10] to be valid provided n has an appreciable imaginary component. G(r,ro), whenro € U_,
r € Uy is calculated from the approximation (28) by using reciprocity.

In the absence of the obstacle, the lower medium is assumed to react like a semi - infinite rigid porous
half space. A simple four parameter model of Attenborough [11] can be used to predict the values of
normalised propagation constant, and normalised surface impedance for such media. The normalised
surface impedance and normalised propagation constant both require characteristic values for the
lower medium, i.e. pore shape factor ratio, grain shape factor, effective flow resistivity and porosity.

COMPARISON WITH ANALYTICAL RESULTS

If, in the above theory, ky = k3 and Z; = Z; then equation (14) predicts the values of the pressure
field in the presence of the rigid obstacle but in the absence of the plane boundary, i.e. the rigid
obstacle is in an infinite homogeneous medium. This means that a direct comparison with the classical
results for the scattering of sound from a rigid obstacle can be made. Morse and Ingard, [12], give
expressions for the field scattered by a rigid sphere, where the incident plane wave is ezp(ikz),
travelling in the positive x-direction. If, in the above theory, the source is positioned sufficiently
far from the obstacle, such that the incident field at the obstacle is assumed approximately plane
then such a direct comparison can be made. Table 1 shows the results for the ratio of the scattered
field to the direct field, at several points close to a sphere of radius 0.5 m, within a porous medium
of propagation constant ¥ = (5.0 + 0.051)/m. The source for the BIE method is positioned at
z = -1000.0m (y = 0, z = 0), the centre of the sphere being taken as the origin and the number of
elements is varied. It is observed that there is convergence as the number of elements is increased.

COMPARISON WITH EXPERIMENTAL RESULTS
A set of simple laboratory measurements within a small anechoic chamber were carried out to compare

with the theory. In these experiments, a porous half-space was modelled by a 0.5m thick layer of
pea-gravel (maximum grain size 0.95cm). A wooden hemisphere of 0.125m diameter was used as the
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