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Preface

This book has developed from a course which we have given periodically
over the last eight years. It is addressed to beginning graduate students of
mathematics, engineering and the physical sciences. Thus, we have at-
tempted to present it while presupposing a minimal background: the
reader is assumed to have some prior acquaintance with the concepts of
‘linear’ and ‘continuous’ and also to believe L? is complete. An under-
graduate mathematics training through Lebesgue integration is an ideal
background but we dare not assume it without turning away many of our
best students. The formal prerequisite consists of a good advanced
calculus course and a motivation to study partial differential equations.

A problem is called well-posed if for each set of data there exists
exactly one solution and this dependence of the solution on the data is
continuous. To make this precise we must indicate the space from which
the solution is obtained, the space from which the data may come, and
the corresponding notion of continuity. Our goal in this book is to show
that various types of problems are well-posed. These include boundary
value problems for (stationary) elliptic partial differential equations and
initial-boundary value problems for (time-dependent) equations of
parabolic, hyperbolic, and pseudo-parabolic types. Also, we consider
some nonlinear elliptic boundary value problems, variational or unila-
teral problems, and some methods of numerical approximation of solu-
tions.

We shall briefly describe the contents of the various chapters. Chapter I
presents all the elementary Hilbert space theory that is needed for the
book. The first half of Chapter I is presented in a rather brief fashion and
is intended both as a review for some readers and as a study guide for
others. Non-standard items to note here are the spaces C™(G), V*, and
V'. The first consists of restrictions to the closure of G of functions on R"
and the last two consist of conjugate-linear functionals.

Chapter II is an introduction to distributions and Sobolev spaces. The
latter are the Hilbert spaces in which we shall show various problems are

vii



viii PREFACE

well-posed. We use a primitive (and non-standard) notion of distribution
which is adequate for our purposes. Our distributions are conjugate-
linear and have the pedagogical advantage of being independent of any
discussion of topological vector space theory.

Chapter III is an exposition of the theory of linear elliptic boundary
value problems in variational form. (The meaning of ‘variational form’ is
explained in Chapter VII.) We present an abstract Green’s theorem
which permits the separation of the abstract problem into a partial
differential equation on the region and a condition on the boundary. This
approach has the pedagogical advantage of making optional the discus-
sion of regularity theorems. (We construct an operator 8 which is an
extension of the normal derivative on the boundary, whereas the normal
derivative makes sense only for appropriately regular functions.)

Chapter IV is an exposition of the generation theory of linear semi-
groups of contractions and its application to solve initial-boundary value
problems for partial differential equations. Chapters V and VI provide
the immediate extensions to cover evolution equations of second order
and of implicit type. In addition to the classical heat and wave equations
with standard boundary conditions, the applications in these chapters
include a multitude of non-standard problems such as equations of
pseudo-parabolic, Sobolev, viscoelasticity, degenerate or mixed type;
boundary conditions of periodic or non-local type or with time-
derivatives; and certain interface or even global constraints on solutions.
We hope this variety of applications may arouse the interests even of
experts.

Chapter VII begins with some reflections on Chapter I1I and develops
into an elementary alternative treatment of certain elliptic boundary
value problems by the classical Dirichlet principle. Then we briefly discuss
certain unilateral boundary value problems, optimal control problems, and
numerical approximation methods. This chapter can be read immediately
after Chapter III and it serves as a natural place to begin work on
nonlinear problems.

Each chapter is divided into sections and (usually) subsections. The
notation ‘Section IT1.5.2’ refers to Chapter III, Section 5, Subsection 2.
The notation ‘Section 5.2’ means Section 5, Subsection 2 of that chapter
in which it occurs. Major results are labeled alphabetically within each
section. Thus, ‘Theorem II1.5.C’ means Theorem 5.C in Section 5 of
Chapter III. In Chapter III we refer to it as Theorem 5.C. Displayed
formulas and problems are referenced as (2.1) for Formula 1 of Section 2
in that same chapter; II1(2.1) means (2.1) in Chapter II1.

There are a variety of ways this book can be used as a text. In a year
course for a well-prepared class, one may complete the entire book and
supplement it with some related topics from nonlinear functional analysis.



PREFACE ix

In a semester course for a class with varied backgrounds, one may cover
Chapters I, II, I, and VII. Similarly, with that same class one could cover
in one semester the first four chapters. In any abbreviated treatment one
could omit Sections 1.6, I1.4, I1.5, 111.6, the last three sections of Chapters
IV, V, and VI, and Section VII.4. We have included over 40 examples in
the exposition and there are about 200 exercises. The exercises are placed
at the ends of the chapters and each is numbered so as to indicate the
section for which it is appropriate.

Some suggestions for further study are arranged by chapter and pre-
cede the Bibliography. If the reader develops the interest to pursue some
topic in one of these references, then this book will have served its

purpose.

R. E. Showalter
Austin, Texas
January, 1977
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I

Elements of
Hilbert Space

1. Linear Algebra

We begin with some notation. A function F with domain dom (F)=A
and range Rg (F) a subset of B is denoted by F: A — B. That a point
x € A is mapped by F to a point F(x) € B is indicated by x— F(x). If S is
a subset of A then the image of S by F is F(S)={F(x):xe S}. Thus
Rg(F)= F(A). The pre-image or inverse image of aset T< B is F(T) =
{xe A:F(x)e T}. A function is called injective if it is one-to-one, surjec-
tive if it is onto, and bijective if it is both injective and surjective. Then it
is called, respectively, an injection, surjection, or bijection.

K will denote the field of scalars for our vector spaces and is always one
of R (real number system) or C (complex numbers). The choice in most
situations will be clear from the context or immaterial, so we usually
avoid mention of it.

The ‘strong inclusion’ K © = G between subsets of Euclidean space R™
means K is compact, G is open, and K= G. If A and B are sets, their
Cartesian product is given by AXB={[a,b]:ac A,beB}. If A and B
are subsets of K" (or any other vector space) their set sum is A+ B =
{a+b:ae A, beB}.

1.1

A linear space over the field K is a non-empty set V of vectors with a
binary operation addition +: VXV —V and a scalar multiplication -:
KX V— V such that (V,+) is an Abelian group, i.c.,

(x+y)+z=x+(y+2), X,y 2€V,
there isazero e V:x+6=x, xeV,
if xeV, there is —xeV:ix+(—x)=6, and
xty=y+x, . x,yevV,
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and we have
(@a+B) x=a-x+B-x a-(xty)=a-xta-y,
a-(B-x)=(aB) - x, 1-x=x, x,yeV,a BeK.

We shall suppress the symbol for scalar multiplication since there is no
need for it.

Examples (a) The set K" of n-tuples of scalars is a linear space over K.
Addition and scalar multiplication are defined coordinatewise:

(xb X2, - -'7xn)+(yl>y27-v~>Yn)=(xl+yl) x2+y2)---7xn+yn)

a(xly X2y 000y xn) = (axla aAX2, ...y axn)-

(b) The set K* of functions f: X —1K is a linear space, where X is a
non-empty set and we define (fi+f2)(x)=fi(x)+f(x), (af)(x)= af(x),
xeX.

(c) Let G<R" be open. The above pointwise definitions of linear
operations give a linear space structure on the set C(G, K) of continuous
f: G — K. We normally shorten this to C(G).

(d) For each n-tuple @ = (ay, a2, ..., a,) of non-negative integers, we
denote by D* the partial derivative
a|°‘|
axTrox52 - - axpn

of order |a|= o+ ax+ - - + a,. The sets C™(G) ={fe C(G): D°fe C(G)
for all a,|aj=m}, m=0, and C*(G)=[\m=1 C"(G) are linear spaces
with the operations defined above. We let D°® be the identity where
0=1(0,0,...,0), so C%(G)=C(G).

(e) For fe C(G), the support of f is the closure in G of the set
{xe G:f(x)#0} and we denote it by f. Co(G) is the subset of those
functions in C(G) with compact support. Similarly, we define Cg(G)=
C™(G)N Co(G), m=1 and Co(G)= C*(G)N Co(G).

() If f:A— B and C< A, we denote by f | ¢ the restriction of f to C.
We obtain useful linear spaces of functions on the closure G as follows:

C™(G)={f|c:feCo®™)}, C(G)={fls:fe CG®")}

These spaces play a central role in our work below.

1.2

A subset M of the linear space V is a subspace of V if it is closed under
the linear operations. That is, x +y€ M whenever x, y € M and axeM
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for each @ €K and x € M. We denote that M is a subspace of Vby M< V.
1t follows that M is then (and only then) a linear space with addition and
scalar multiplication inherited from V.

Examples We have three chains of subspaces given by
C'(G)=C*(G)=K°,
C'(G)=C*(G), and
{0}<CiG)<CKG), O<ksj<w.

Moreover, for each k as above, we can identify ¢ € C§(G) with that
® e C*(G) obtained by defining ® to be equal to ¢ on G and zero on 3G,
the boundary of G. Likewise we can identify each ®¢ C*(G) with
d)lce C*(G). These identifications are ‘compatible’ and we have
CKG)=C*(G)= CH(G).

1.3

We let M be a subspace of V and construct a corresponding quotient
space. For each xeV, define a coset %= {yeV:iy—xeM}=
{x+m:me M}. The set V/M ={%:x e V}is the quotient set. Any ye X is a
representative of the coset £ and we clearly have ye X if and only if x e y
if and only if £=79. We shall define addition of cosets by adding a
corresponding pair of representatives and similarly define scalar multipli-
cation. It is necessary first to verify that this definition is unambiguous.

Lemma_If x,, €%, y1,y:€ 7, and a €K, then (xi+y1)=(x2+y2) and
(ax1) = (ax;).

The proof follows easily, since M is closed under addition _and scalar
multiplication, and we can define ’3‘*‘?:("/@ and af = (ax). These
operations make V/M a linear space.

Examples (a) Let V=R? and M ={(0, x2): x,€R}. Then V/M is the set
of parallel translates of the x,-axis, M, and addition of two cosets is easily
obtained by adding their (unique) representatives on the X1-axis.

(b) Take V=C(G). Let xo€ G and M={pec C(G): ¢(xo) = 0}. Write
each ¢ € V in the form ¢(x)=(¢(x)— @(x0)) + @(x0). This representation
can be used to show that V/M is essentially equivalent (isomorphic) to K.

(c) Let V= C(G) and M = Co(G). We can describe V/M as a space of
‘boundary values’. To do this, begin by noting that for each Kc <G
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there is a Y€ Co(G) with y=1 on K (cf. Section 11.1.1). Then write a
given ¢ € C(G) in the form

e=(e)+(1—y),

where the first term belongs to M and the second equals ¢ in a
neighborhood of 9G.

1.4

Let V and W be linear spaces over K. A function T: V— W is linear if
T(ax+ By)=aT(x)+ BT(y), a, BelK, X, ye V.

That is, linear functions are those which preserve the linear operations.
An isomorphism is a linear bijection. The set {x € V: Tx = 6} is called the
kernel of the (not necessarily linear) function T: V—-W and we denote it
by K(T).

Lemma If T:V— W is linear, then K(T) is a subspace of V, Rg(T) is a
subspace of W, and K(T)={6} if and only if T is an injection.

Examples (a) Let M be a subspace of V. The identity iy:M— Visa
linear injection x+— x and its range is M.

(b) The quotient map gn: V— V/IM, x> %, is a linear surjection with
kernel K(gm)=M.

(c) Let G be the open interval (a,b) in R and consider D=
d/dx: V— C(G), where V is a subspace of C'(G). If V=C"(G), then D
is a linear surjection with K(D) consisting of constant functions on G It
V={¢ e_Cl(G) :@(a)=0}, then D is an isomorphism. Finally, if V=
{ec C'(G): p(a)= @(b)=0}, then Rg(D)={p € C(G):fc ¢ =0}

Our next result shows how each linear function can be factored into the
product of a linear injection and an appropriate quotient map.

Theorem 1.A Let T:V— W be linear and M be a subspace of K(T).
Then there is exactly one function T:VIM— W for which Toqm=T, and
T is linear with Rg(T)=Rg(T). Finally, T is injective if and only if
M= K(T).

Proof If x,, x,€ %, then x;— x,€ M < K(T), so T(x,)=T(xz). Thus we
can define a function as_ desired by the formula T(£) = T(x). The unique-
ness and linearity of T follow since gy is surjective and linear. The
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equality of the ranges follows, since g is surjective, and the last
statement follows from the observation that K (M<=Mifandonlyif xe V
and T(X)=0 imply £=0.

An immediate corollary is that each linear function T:V— W can be
factored into a product of a surjection, an isomorphism, and an injection:

T =igg(my° Togecr).
A function T:V— W is called conjugate linear if
T(ax+ By) = aT(x)+ BT(y), a, B EK, x,ye V.
Results similar to those above hold for such functions.

1.5

Let V and W be linear spaces over K and consider the set L(V, W) of
linear functions from V to W. The set WY of all functions from V to W
is a linear space under the pointwise definitions of addition and scalar
multiplication (cf. Example 1.1(b)), and L(V, W) is a subspace.

We define V* to be the linear space of all conjugate linear functionals
from V—IK. V* is called the algebraic dual of V. Note that there is a
bijection fr—f of £(V,K) onto V*, where f is the functional defined by
f(x)=f(x) for xe V and is called the conjugate of the functional f: V—
K. Such spaces provide a useful means of constructing large linear spaces
containing a given class of functions. We illustrate this technique in a
simple situation.

Example Let G be open in R" and xo€ G. We shall imbed the space
C(G) in the algebraic dual of Co(G). For each fe C(G), define Tre

Ti(e) = Lf& ¢ € Co(G).

Since f@ € Co(G), the Riemann integral is adequate here. An easy exer-
cise shows that the function frs T;: C(G)— Co(G)¥ is a linear injection,
so we may thus identify C(G) with a subspace of Co(G)*. This linear
injection is not surjective; we can exhibit functionals on Cy(G) which are
not identified with functions in C(G). In particular, the Dirac functional
§,, defined by

8x(0)=¢(x0), @€ ClG),

cannot be obtained as Ty for any fe C(G). That is, T;= 8, implies that
f(x)=0 for all x€ G, x# xo, and thus f=0, a contradiction.
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2. Convergence and Continuity

The absolute value function on R and modulus function on C are denoted
by |-|, and each gives a notion of length or distance in the corresponding
space and permits the discussion of convergence of sequences in that

space or continuity of functions on that space. We shall extend these
concepts to a general linear space.

2.1

A seminorm on the linear space V is a function p: V—R for which

p(ax)=|a|p(x) and p(x+y)<p(x)+p(y) for all a€K and x,ye V. The
pair V, p is called a seminormed space.

Lemma If V,p is a seminormed space, then

(@) [p(x)—p(I=px—y), x,yeV,

(b) p(x)=0, xeV, and

(c) the kernel K(p) is a subspace of V.

(d) If TeL(W, V), then peT:W—R is a seminorm on W.

(¢) If p; is a seminorm on V and a;=0, 1<j<n, then Yi1apjisa
seminorm on V.

Proof We have p(x)=p(x—y+y)<p(x-y)+p(y) so p(x)—p(y)=
p(x—y). Similarly, p(y)— p(x)<p(y —x)=p(x—y), so the result follows.
Setting y =0 in (a) and noting p(6)=0, we obtain (b). The result (c)
follows directly from the definitions, and (d) and (e) are straightforward
exercises.

If p is a seminorm with the property that p(x) >0 for each x# 6, we call
it a norm.

Examples (a) For 1<k=<n we define seminorms on K" by p(x)=
Yoo 1xl ge(x) = =1 %), and n(x) = max {|x;|: 1=<j=<k}. Each of p,,
g» and r, is a norm.

(b) If J= X and fek™, we define Py(f)=sup{|f(x)|:x€J}. Then for
each finite J< X, P; is a seminorm on K*.

(c) For each K< <= G, Px is a seminorm on C(G). Also, Pg=Pg is a
norm on C(G).

(d) For each j, 0=<j=<k, and K< <G we can define a seminorm on
C*(G) by pix(f)=sup {{D®f(x)|: x € K, || < j}. Each such p;c is a norm
on C*(G).
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2.2

Seminorms permit a discussion of convergence. We say the sequence {x,}
in V converges to xe€ V if lim,_,. p(x, — x)=0; that is, if {p(x,—x)}is a
sequence in R converging to 0. Formally, this means that for every ¢ >0
there is an integer N =0 such that p(x, —x) <e for all n= N. We denote
this by x,, — x in V, p and suppress the mention of p when it is clear what
is meant.

Let Sc V. The closure of Sin V,pistheset S={xe V:x,—xin V,p
for some sequence {x,} in S} and S is called closed if S=S. The closure §
of S is the smallest closed set containing $:S< S, §=8§, and if Sc K=K
then S< K.

Lemma Let V,p be a seminormed space and M be a subspace of V.
Then M is a subspace of V.

Proof Let x,ye M. Then there are sequences X, y. € M such
that x,—x and y,—y in V,p. But p((x+y)—(x,+y))<
p(x - x,)+ p(y — y») = 0 which shows that (x, +y.)— x +y. Since x,, + y. €
M, all n, this implies that x+ye M. Similarly, for aek we have
plax —ax,)=|alp(x — x.)—0, s0 axe M.

2.3

Let V, p and W, q be seminormed spaces and T: V— W (not necessarily
linear). Then T is called continuous at x€ V if for every £ >0 there is a
>0 for which ye V and p(x—y)<$ implies q(T(x)—T(y))<e. T is
continuous if it is continuous at every x€ V.

Theorem 2.A T is continuous at x if and only if x,— x in V, p implies
Tx,— Tx in W, q.

Proof Let T be continuous at x and £>0. Choose §>0 as in the
definition above and then N such that n= N implies p(x, —x) <8, where
x, — x in V, p is given. Then n= N implies q(Tx,—Tx)<e, so Tx, —> Tx
in W, g.

Conversely, if T is not continuous at x, then there is an ¢ >0 such that
for every n=1 there is an x, € V with p(x, —x)<1/n and q(Tx, — Tx)=
e. That is, x,— x in V, p but {Tx,} does not converge to Tx in W, q.

We record the facts that our algebraic operations and seminorm are
always continuous.



