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Preface

This work describes the fundamental principles, problems, and methods
of classical mechanics focussing on its mathematical aspects. The authors
have striven to give an exposition stressing the working apparatus of classical
mechanics, rather than its physical foundations or applications. This appara-
tus is basically contained in Chapters 1, 3, 4 and 5.

Chapter 1 is devoted to the fundamental mathematical models which are
usually employed to describe the motion of real mechanical systems. Special
consideration is given to the study of motion under constraints, and also
to problems concerned with the realization of constraints in dynamics.

Chapter 3 is concerned with the symmetry groups of mechanical systems
and the corresponding conservation laws. Also discussed are various aspects
of the theory of the reduction of order for systems with symmetry, often
used in applications.

Chapter 4 contains a brief survey of various approaches to the problem
of the integrability of the equations of motion, and discusses some of the
most general and effective methods of integrating these equations. Various
classical examples of integrated problems are outlined. The material pre-
sented in this chapter is used in Chapter 5, which is devoted to one of the
most fruitful branches of mechanics — perturbation theory. The main task
of perturbation theory is the investigation of problems of mechanics which
are “close” to exactly integrable problems. Elements of this theory, in partic-
ular, the widely used ““averaging principle”, have emerged in celestial me-
chanics from attempts to take into account the mutual gravitational perturba-
tions of planets in the solar system.

Chapter 6 is related to Chapters 4 and 5, and studies the theoretical possi-
bility of integrating (in a precisely defined sense) the equations of motion.
Approximate integration methods are discussed in Chapter 5: their signifi-
cance is increased by the fact that integrable systems occur so rarely in
reality. Also in this chapter there is a study of the n-body problem with
special consideration given to the problem of the stability of the solar system.
Some of the classical problems of celestial mechanics are treated in Chapter 2,
including the integrable 2-body problem, and the classification of final mo-
tions in the 3-body problem. This chapter also contains an analysis of col-
lisions, various aspects of regularization in the general problem of n points
interacting gravitationally, and various limiting variants of this problem.
Elements of the theory of oscillations are given in Chapter 7.



X1v Preface

This text is not a complete exposition of these topics and we do not give
detailed proofs. Our main purpose is to acquaint the reader with classical
mechanics as a whole, in both its classical and its contemporary aspects.
The interested reader will find the necessary proofs, and more detailed infor-
mation, in the works listed at the end of this volume.
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Chapter 1
Basic Principles of Classical Mechanics

To describe the motion of mechanical systems one uses a variety of mathe-
matical models which are based on different “principles” — laws of motion.
In this chapter we list the basic objects and principles of classical mechanics.
The simplest and most important model of motion of real bodies is Newton-
ian mechanics, which describes the motion of a free system of interacting
point masses in three-dimensional Euclidean space. In §6 we discuss the
extent to which Newtonian mechanics is useful in describing complicated
models of motion.

§1. Newtonian Mechanics

1.1. Space, Time, Motion. Space, in which motion takes place, is three-
dimensional and Euclidean, with a fixed orientation. We shali denote it by
E3. Fix a point o€ E® — an “origin” or “reference point”. Then the position
of each point s in E* is uniquely specified by its position (radius) vector
os=r (with its tail and tip at o and s, respectively). The set of all position
vectors is the three-dimensional linear space R>. This space is equipped with
the scalar product {, ).

Time is one-dimensional; we denote it uniformly by t. The set R={t}
is called the time axis.

A motion (or path) of the point s is a smooth mapping 4 — E3, where
4 is a time interval. We say that the motion is defined on the interval 4.
To each motion there corresponds a unique smooth vector-function r: 4 - R3.

The velocity v of the point s at time te 4 is the derivative dr/dt=r(t)eR>.
Velocity is clearly independent of the choice of the reference point.

Fig. 1



