Kathleen Steinhofel (Ed.)

Stochastic Algorithms:
Foundations
and Applications

International Symposium, SAGA 2001
Berlin, Germany, December 13-14, 2001
Proceedings

€ Springer

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editor

Kathleen Steinhofel

GMD - National Research Center for Information Technology
Institute for Computer Architecture and Software Engineering
Kekuléstr. 7, 12489 Berlin-Adlershof, Germany

E-mail: kathleen.steinhoefel @ gmd.de

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Stochastic algorithms: foundations and applications : international
symposium ; proceedings / SAGA 2001, Berlin, Germany, December
13 — 14, 2001 / Kathleen Steinhofel (ed.). - Berlin ; Heidelberg ; New York ;
Barcelona ; Hong Kong ; London ; Milan ; Paris ; Tokyo : Springer, 2001
(Lecture notes in computer science ; Vol. 2264)
ISBN 3-540-43025-3

CR Subject Classification (1998):F2, F.1.2,G.1.2, G.1.6, G.2, G.3

ISSN 0302-9743
ISBN 3-540-43025-3 Springer- Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Steingriiber Satztechnik GmbH, Heidelberg
Printed on acid-free paper SPIN 10846149 06/3142 543210

Preface

SAGA 2001, the first Symposium on Stochastic Algorithms, Foundations and
Applications, took place on December 13-14, 2001 in Berlin, Germany. The
present volume comprises contributed papers and four invited talks that were
included in the final program of the symposium.

Stochastic algorithms constitute a general approach to finding approximate
solutions to a wide variety of problems. Although there is no formal proof that
stochastic algorithms perform better than deterministic ones, there is evidence
by empirical observations that stochastic algorithms produce for a broad range
of applications near-optimal solutions in a reasonable run-time.

The symposium aims to provide a forum for presentation of original research
in the design and analysis, experimental evaluation, and real-world application of
stochastic algorithms. 1t focuses, in particular, on new algorithmic ideas involv-
ing stochastic decisions and exploiting probabilistic properties of the underlying
problem domain. The program of the symposium reflects the effort to promote
cooperation among practitioners and theoreticians and among algorithmic and
complexity researchers of the field. In this context, we would like to express our
special gratitude to DaimlerChrysler AG for supporting SAGA 2001.

The contributed papers included in the proceedings present results in the
following areas: Network and distributed algorithms; local search methods for
combinatorial optimization with application to constraint satisfaction problems,
manufacturing systems, motor control unit calibration, and packing flexible ob-
jects; and computational learning theory.

The invited talk by Juraj Hromkovié¢ surveys fundamental results about ran-
domized communication complexity. In the talk, the efficiency of randomized
communication is related to deterministic and nondeterministic communication
models. Martin Sauerhoff discusses randomized variants of branching programs
which allow the relative power of deterministic, nondeterministic, and random-
ized algorithms to be studied. Recent results on random 3-SAT formulas are
summarized by Gregory Sorkin. The focus is on bounds for their density and
shows how to tune so-called myopic algorithms optimally. Thomas Zeugmann
gives an overview on stochastic finite learning that connects concepts from PAC
learning and models of inductive inference learning.

Our special thanks go to all who supported SAGA 2001, to all authors who
submitted papers, to all members of the program committee who provided very
detailed referee reports, to the invited speakers, (o the organizing committee,
and to the sponsoring institutions.

December 2001 Kathleen Steinhofel

Organization

SAGA 2001 was organized by the GMD - German Research Centre for Informa-

tion Technology, Institute for Computer Architecture and Software Engineering
FIRST, Berlin.

Organization Committee

Andreas Jakoby Peggy Kriiger
Babette Neumann Friedrich Wilhelm Schroer
Kathleen Steinhofel Armin Wolf

Program Committee

Andreas Albrecht (University of Hertfordshire, UK)
Juraj Hromkovi¢c (RWTH Aachen, Germany)

Oktay Kasim-Zade (Moscow State University, Russia)
Frieder Lohnert (DaimlerChrysler AG, Germany)
Evelyne Lutton (INRIA, France)

Dirk Mattfeld (University of Bremen, Germany)
Heinz Miihlenbein (GMD AIS, Germany)

Christian Scheideler (Johns Hopkins University, USA)
Gregory Sorkin (IBM Research, NY, USA)

Kathleen Steinhéfel (Chair, GMD FIRST, Germany)
Toby Walsh (University of York, UK)

Peter Widmayer (ETH Zurich, Switzerland)

CK Wong (The Chinese University, Hong Kong)
Thomas Zeugmann (Medical University of Liibeck, Germany)

Sponsoring Institutions

DaimlerChrysler AG, Germany
IT Service Omikron GmbH

Table of Contents

Invited Talk
Randomized Communication Protocols (A Survey) 1
Juraj Hromkovi¢

Optimal Mutation Rate Using Bayesian Priors
for Estimation of Distribution Algorithms 33
Thilo Mahnig, Heinz Mihlenbein

An Experimental Assessment of a Stochastic, Anytime, Decentralized,
Soft Colourer for Sparse Graphs i il 49
Stephen Fitzpatrick, Lambert Meertens

Invited Talk
Randomized Branching Programs 65
Martin Sauverhoff

Yet Another Local Search Method for Constraint Solving 73
Philippe Codognet, Daniel Diaz

An Evolutionary Algorithm for the Sequence Coordination
in Furniture Production 91
Carlo Meloni

Evolutionary Search for Smooth Maps

in Motor Control Unit Calibration 107
Jan Poland, Kosmas Knédler, Alexander Mitterer,
Thomas Fleischhauer, Frank Zuber-Goos, Andreas Zell

Invited Talk
Some Notes on Random Satisfiability 117
Gregory B. Sorkin

Prospects for Simulated Annealing Algorithms
in Automatic Differentiation............ L. 131
Uwe Naumann, Peter Gottschling

Optimization and Simulation: Sequential Packing of Flexible Objects
Using Evolutionary Algorithms 145
Henning Behnke, Michael Kolonko, Ulrich Mertins, Stefan Schnitter

Invited Talk
Stochastic Finite Learning L 155
Thomas Zeugmann

VIII Table of Contents

Sequential Sampling Algorithms: Unified Analysis and Lower Bounds
Ricard Gavalda, Osamu Watanabe

Approximate Location of Relevant Variables
under the Crossover Distribution.....................................
Peter Damaschke

Author Index

Randomized Communication Protocols
(A Survey)

Juraj Hromkovic¢*

Lehrstuhl fiir Informatik I, RWTH Aachen,
Ahornstrafie 55, 52074 Aachen, Germany

Abstract. There are very few computing models for which the power
of randomized computing is as well understood as for communication
protocols and their communication complexity. Since the communication
complexity is strongly related to several complexity measures of distinct
basic models of computation, there exist possibilities to transform some
results about randomized communication protocols to other computing
models, and so communication complexity has established itself as
a powerful instrument for the study of randomization in complexity
theory. The aim of this work is to survey the fundamental results
about randomized communication complexity with the focus on the
comparison of the efficiency of deterministic, nondeterministic and
randomized communication.

Keywords: Randomized computing, communication complexity, two-
party protocols.

1 Introduction

The communication complexity of two-party protocols was introduced by Yao
(1] in 1978-79. (Note that communication complexity was implicitly considered
by Abelson [2], too.) The initial goal was to develop a method for proving lower
bounds on the complexity of distributed and parallel computations, with a spe-
cial emphasis on VLSI computations [3-11].

But the study of communication complexity contributed to complexity theory
much more than one had expected at the beginning in the early eighties and
recently its relation to VLSI theory does not belong to the most important
applications of communication protocols. The communication complexity theory
established itself as a subarea of complexity theory and the main reasons for this
successful story are the following ones:

(i) Communication complexity (similarly as Kolmogorov complexity) became a
powerful method in proving lower bounds on fundamental complexity mea-
sures of concrete problems (see {3, 4] for some surveys). In some applications
it caused a breakthrough in the long efforts in proving lower bounds (see,

* Supported by the DFG Project Hr.

K. Steinhofel (Ed.): SAGA 2001, LNCS 2264, pp. 1-32, 2001.
© Springer-Verlag Berlin Heidelberg 2001

2 Juraj Hromkovi¢

for instance, [12-17]). This succeeded especially due to the development of a
powerful nontrivial mathematical machinery for determining the communi-
cation complexity of concrete problems, while the relation of communication
complexity to other complexity measures is typically transparent and usually
easy to get.

(ii) Communication complexity essentially contributed to our understanding of
randomized computation. There are very few computing models for which
the power of randomized computing is as well understood as for two-party
communication protocols. Moreover, due to (i) one can extend the results
about randomized communication complexity to some other basic computing
models.

This survey focuses on the study of randomized communication protocols.
[t is organized as follows. Section 2 presents the basic model of two-party com-
munication protocols and its nondeterministic and randomized extensions. Here,
we consider Las Vegas, one-sided-error and two-sided-error (bounded-error) ran-
domization. Section 3 gives a short overview about methods for proving lower
bounds on communication complexity. The central parts of this paper are Sec-
tion 4 and 5. Section 4 relates the efficiency of randomized communication to
the deterministic and nondeterministic communication models. Section 5 inves-
tigates whether one can restrict the number of random bits without restricting
the power of randomized communication protocols. Because of the lack of space
we do not present any survey of applications of results presented in Sections 4
and 5 to other computing models.

2 Definition of Communication Protocols

Informally, a two-party (communication) protocol consists of two comput-
ers Cy and Cy; and a communication link between them. A protocol computes a
finite function f: U x V — Z in the following way. At the beginning C; obtains
an input a € U and C}j obtains an input 8 € V. Then C; and C;; communicate
according to the rules of the protocol by exchanging binary messages until one
of them knows f(a,3). The communication complexity of the computa-
tion on an input («, B) is the sum of the lengths of messages exchanged. The
communication complexity of the protocol is the maximum of the complexities
over all inputs from U x V. The communication complexity of f, cc(f), is
the complexity of the best protocol for f.

Typically, one considers the situation that U = {0,1}*, V = {0,1}" and
Z ={0,1}, i.e. f is a Boolean function of 2n variables. Since this restriction is
sufficient for our purposes we give the formal definition for protocols computing
Boolean functions only. In what follows we describe the computation of a protocol
on an specific input by a string ¢;8c28 ... $ck8cky1, where ¢; € {0,1}F for i =
1,...,k are the messages exchanged (c; is the first message sent from C; to
Ci1, co is the second message submitted from Cy; to Cy, etc.) and cp4 is
the result of the computation. The part c;co. .. $ci is called the history of
communication.

Randomized Communication Protocols (A Survey) 3

Definition 1. Let f : {0,1}" x {0,1}" — {0,1} be a Boolean function over
a set X = {z1,29,...,T2n} of Boolean variables. A protocol P over X (or
over {0,1}" x {0,1}") is a function from {0,1}" x {0,1,8}* to {0,1}* U
{accept, reject} such that

(i) P has the prefix-freeness property:
For each c € {0,1,8}* and any two different ., 3 € {0,1}", P(a,c) is no
proper prefiz of P(3,¢).
{ The next message P(a,c) is computed either by Cy or by Cyy in the depen-
dence of the input o of C; (Cyy) and the history ¢ of communication. The
prefiz-freeness property assures that the messages exchanged between the two
computers are self-delimiting, and no extra “end of transmission” symbol is
required. To visualize the end of messages in the history of communication
¢, we write the special symbol § at the end of every message.}

(i) If ®(a,c) € {accept,reject} for an a € {0,1}™, and ¢ € ({0,1}*$)? for
some p € IN [for ¢ € ({0,1}7$)2P*1] then for all ¢ € IN, v € {0,1}™,
d € ({0,1}*78)2*! [d € ({0,1}78)%), P(v,d) ¢ {accept,reject} for every
communication history d € {0,1,$}*.
{ This property assures that the output value is always computed by the same
computer independently of the input assignment.}

(iis) For every c € {0,1,8}*, if P(a,c) € {accept,reject} for some o € {0,1}",
then P(B,c) € {accept,reject} for every g € {0,1}".
{ This property assures that if the computer Cr (Cyr) computes the output
for an input, then the other computer Cry (Cr) knows that Cy (Cpp) knows
the result, and so it does not wait for further communication.}

A computation of P on an input (a,3) € {0,1}"* x {0,1}" is a string
c=c1%9c9%. .. 8ckScr i, where

(1) k>0, c1,...,ck € {0,1}F, ck41 € {accept, reject}, and
(2) for every integer 1, 0 <1 <k,
(2.1) if | is even, then c;41 = Po,c18¢28...%¢$), and
{The message ci41 is sent by Cr, and Cr computes ¢;41 in dependence
of its input part a and of the whole current communication history
C1$C2$ A $C1$.}
(2.2) if L is odd, then cj41 = P(8,¢18¢28 ... $¢;8).
{ The message c;41 is sent from Cyy to Cy, and Cpp computes Cyy1 in the
dependence of its input 8 and the communication history c1$¢2$... $¢;8.}

For every computation ¢ = ¢1$8¢28 . .. $ckSexy,
Com(c) = c18c08 ... 8¢, 8

is the communication (or communication history) of c.

We say that P computes f if, for every (o, 8) € {0,1}" x {0,1}", the com-
putation of P on («, B) is finite and ends with “accept” if and only if f(a,B) = 1.
In what follows we also say that a computation is accepting (rejecting) if it
ends with accept (reject).

4 Juraj Hromkovi¢

The length of a computation ¢ is the total length of all messages in c
(ignoring $’s and the final accept/reject). The communication complexity
of the protocol P, cc(P), is the maximum of all computation lengths over all
inputs (a, B) € {0,1}™ x {0,1}™.

The communication complexity of f is

cc(f) = min{cc(P)| P computes f}.
O

We use the notation P(a, 3) for the output € {accept, reject} of the com-
putation of the protocol P on the input {(«,). Note that “accept” is used to
denote the result “1”, and “reject” is used to denote the result “0”. We use the
notations “accept” and “reject” instead of “1” and “0" in order to distinguish
between the communication bits and the results. Besides the reason above it will
be convenient to be able to speak about accepting and rejecting computations
in what follows.

To illustrate the above definition we consider the following simple examples.

Let

Eqn(IthM~‘7In7y1)y27"‘7yn)= Ti = Yi

~.

1

be the Boolean function of 2n variables from {0,1}" x {0,1}" to {0, 1} that takes
the value 1 iff the first half of the input is equal to the second half of the input.
A protocol P computing Eq,, can simply work as follows. C; sends its whole
input a € {0,1}" to Cy; and Cyy compares whether o is identical with its input
B € {0,1}". Formally,

P(a,\) = a, and!

_ Jaccept if a=g.
P(B,a8) = {reject ifag.

(2

We observe that the above described strategy (C; sends its whole input to
Cj1) works for every function and so

ce(f)€n

for every Boolean function f: {0,1}" x {0,1}" — {0,1} of 2n variables.

Now, consider the symmetric function s, : {0,1}?" — {0,1} that takes the
value 1 if and only if the number of 1’s in the input is equal to the number of
0’s in the input. A simple way to compute 85, by a protocol follows. C| sends
the binary representation of the number #;(a) of 1’s in its input o € {0,1}".
Cyr checks whether #1(a) + #1(8) = n, where 8 € {0,1}" is the input of Cy;.
Obviously, the communication complexity of this protocol is [logy(n + 1)].

Note that we shall later show that the above protocols for Eq,, and s;, are
optimal. We observe that these protocols are very simple because the whole

! X\ denotes the empty word.

Randomized Communication Protocols (A Survey) 5

communication consists of the submission of one message. The protocols whose
computations contains at most one message are called one-way protocols in
what follows. For every Boolean function f

cc1(f) = min{cc(P) | P is a one-way protocol computing f}

is the one-way communication complexity of f.

In Section 3 we shall see that there can be an exponential gap between
cc1(f) and ce(f). The following function fina(n)(1,22, ...+ Tn,y1,¥2,...,yn) for
n = 2k k € IN - {0}, is an example of a computing problem where one can
profit from the exchange of more than one message between C; and Cj;. Let,
for every binary string a = agay ... oy,

k
Number(a) = Z Oy 2

i=0

be the number with the binary representation a. The function fiq(n) takes the
value 1 iff

mNumber(yNumber(zlxz..41[1()&2 w41 Y(Number(z1 29 . 2100, o)+ [Ty 1) mod n)+1 T L.

Informally, the first log, n values of the variables xy,z, ... , Tlog, n determine a
position (an index) a = Number(z, ..., Ziog, n) +1. yo and the following log, n—
1 values of y variables determine an index b, and one requires z, = 1 for the result
1. We describe a protocol P that computes find(n)- C1 sends z1z3. .. T(log, n] 1O
Cyy. After that Cyy sends the message ya¥(at1) mod n - - - Y(a+log, n—1) mod n to Cr,
where a = Number(z; . .. Z[10g, n1) + 1. Now, C; accepts iff

2:Number(yay(cn-+-l) mod n+-Y(a+[logg nl~1) mod n)+1 =1

The communication complexity of this protocol is 2 - [log, n].

In what follows we use, for all nonnegative integers [, k, I > [logy k], | > 1,
BIN,; (k) to denote the binary representation of k by a binary string of length
[. This means that if I > [logy k], [— [log, k] leading 0’s are added to the
representation.

One can introduce nondeterminism for protocols in the usual way. Because
of this we prefer to give an informal description of nondeterministic protocols
rather than an exact formal definition.

Let f:U xV — {0,1} be a finite function. A nondeterministic protocol
P computing on inputs from U x V consists of two nondeterministic computers
Cr and Cy. At the beginning C; obtains an input o € U, and C;; obtains an
input 3 € V. As in the deterministic case, the computation consists of a number
of communication rounds, where in one round one computer sends a message to
the other one. The computation finishes when one of the computers decides to
accept or to reject the input (a, 3). In contrast to the deterministic case, C; can
be viewed as a relation on

(U x {0,1,8}") x ({0, 1} U {accept,reject})

6 Juraj Hromkovi¢

and Cjj can be viewed as a relation on
(V x {0,1,8}*) x ({0,1}* U {accept,reject}).

This means that, for every argument {(«,c), C; (Cys) nondeterministically
chooses a message from a finite set of possible messages determined by the ar-
gument (o, ¢).

We say that P computes f if for every (o, 3) e U x V,

(i) if f(a,B) = 1, then there exists an accepting computation of P on the input
(a, B), and
(ii) if f(e, B) = 0, then all computations of P on (a, 3) are rejecting ones.

Again, we require that the prefix-freencss property and the property that
exactly one computer takes the final decision for all inputs are satisfied.

The nondeterministic communication complexity of P, denoted by
nce(P), is the maximum of the lengths of all accepting computations of P. The
nondeterministic communication complexity of f is

ncc(f) = min{ncc(P)| P is a nondeterministic protocol computing f}.

To show the power of nondeterminism in communication consider, for every
positive integer n, the function Ineq,, : {0,1}" x {0,1}" — {0,1} defined by

n
Ineqn(Il,IDz, ey Ty Y, Y2, - 7yn) = V(ml 6991‘),

=1

where @ denotes the exclusive or {plus mod 2).

A nondeterministic protocol P that accepts all inputs (e, 8) € {0,1}" %
{0,1}™ with a # B can work as follows, For every input a = ajas...an, Cf
nondeterministically chooses a number ¢ € {1,...,n} and sends the message
;BIN [, n1 (%) to Cyy, where BIN(ioq, n1(?) is the binary representation of i of
the length? [log,n]. Now, for every input 8 = 3y ...8, of Cr1, Ci accepts if
and only if o; # F;. In the case a; = 3;, Cy rejects the input. Obviously, for
all o, 8 € {0,1}" with o # (3, there exists a j such that a; # §; and so there
exists an accepting computation of P on (a,3). On the other hand if a = 8,
then all n different computations of P on (a,) are rejecting. So, P computes
Ineq,, within the communication complexity [log,n] + 1, i.e.,

nce(Ineq,) < [logyn] + 1.

Similarly as in the deterministic case, one can consider one-way nonde-
terministic protocols whose computations contain at most one message. Let
ncey (f) denote the one-way nondeterministic communication complex-
ity of f.In contrast to the deterministic case, we show that there is no difference
in the power of nondeterministic protocols and one-way nondeterministic proto-
cols.

? This means, that additional 0’s are taken to achieve the required length, if necessary.

Randomized Communication Protocols (A Survey) 7

Theorem 1. For every finite function f,

nee(f) = neey (f).

Proof. Let f be a function from U x V to {0,1}, and let D = (Cy,Cry)
be a nondeterministic protocol computing f. We construct a one-way nonde-
terministic protocol D; that computes f within the communication complexity
ncc(D). In what follows we say that a computation C = ¢18c28 ... $c8c4q is
consistent for C; with an input o € U (or from the point of view of C; and
«) if Cy with the input « has the possibility to send the messages ¢;,¢3,¢s,. ..
when receiving the messages ¢, ¢4,¢6,... from Cpy. Similarly, one can define
the consistency of C according to Cyy with an input 3 € V. Obviously, if C is a
consistent computation for C; on an input « and for Cry on an input 3, then C
is a possible computation of (C,Cyy) on the input (e, 8).

Let C,,Cs, ..., Ck be all accepting computations of D over all inputs from
U x V. Clearly, k < 27¢(P), Let Dy consist of the computers C} and C},. For
every o € U, C} nondeterministically chooses an i € {1,...,k}, and it sends
the message BIN,..(p)(%) to C}; if C; is a possible accepting computation of D
from the point of view of C; and «. In other words, C’} can send the binary
representation of ¢ if and only if there exists an v € V such that C; is the
accepting computation of D on (a,7). For every input 8 of C},;, when C},
receives the binary representation of a number i, then C}; accepts if C; is a
consistent accepting computation from the Cy; and 8 point of view.

So, Dy has exactly the same number of accepting computations as D and
nccy (D) = nee(D). O

There are two distinct ways to introduce randomized protocols. One possi-
bility is to take a nondeterministic protocol and to consider a probability dis-
tribution for every possible nondeterministic guess. Such randomized protocols
are called private because each of the computers takes its random bits from
a separate source; i.e., C; (Cry) does not know the random bits of Cy; (Cy).
If one of the computers wants to know the random bits influencing the choice
of the message submitted by the other computer, then these bits must be com-
municated. Another possibility to define randomized protocols is to say that
a randomized protocol is a probability distribution over a set of deterministic
protocols. Such randomized protocols are called public randomized protocols
because this model corresponds to the situation when both computers have the
same source of random bits (i.e. everybody sees the random bits of the other
one for free). This second approach represents the well-known paradigm “foiling
an adversary” of the design of randomized algorithms. So, every efficient public
randomized protocol can be viewed as a successful application of this paradigm.

Clearly, public randomized protocols are at least as powerful as private ones.
Newman [18] has proved that the relations between the communication com-
plexities of public randomized protocols and private ones are linear for every
bounded-error model. We shall present this result in Section 6. Because of this
and in order to simplify the matters we formally define the public versions of
randomized protocols only.

8 Juraj Hromkovié

In the following definitions we use also the notation P(a,8) =1 (0) instead
of P(w, B) = accept (reject).

Definition 2. Let U and V be finite sets. A randomized protocol over U X
V is a pair R = (Prob, S), where

(i) 8 ={D1,Ds,...,Di} is a set of (deterministic) protocols over U x V, and
(ii) Prob is a probability distribution over the elements of S.

Fori=1,2,...,k, Prob(D;) is the probability that the protocol D; is ran-
domly chosen to work on a given input.
For an input (a, 8) € UxV, the probability that R computes an output
z 18
Prob(R(a,8) =z)= Y Prob(D).

De{(D;,....D;}
D(a,B8)=z2

The communication complexity of R is
cc(R) = max{cc(D)| D € S}.

A randomized protocol R = (Prob, S) is called one-way if all elements of S
are one-way protocols.

For every randomized protocol R = (Prob, {D1, Ds,..., Dy}) with a uniform
probability distribution Prob, the degree of randomness of P is {log, k]. Since
one can unambiguously identify every D; with a binary string of length [log, k],
we call [log, k] the number of random bits of R, too.

In what follows we consider only randomized protocols computing Boolean
functions. In contrast to the previous protocol models we also allow a “neutral”
output “?”, whose meaning is that the protocol was not able to compute any final
answer in the given computation (random attempt). We consider this possibility
for Las Vegas protocols that never err but may produce the answer “?” with a
bounded probability.

Note that in what follows we use also the notation R(a,8) = 1 (R(a,) = 0)
instead of R(a, 3) = "accept” (R(a,3) = "reject”). This is convenient because
we obtain the possibility to speak about the probability of the event R(a,) =
f(a, B) in this way.

Definition 3. Let f : U x V — {0,1} be a finite function. We say, that a
randomized protocol R = (Prob, S) is a (public) Las Vegas protocol for f if

(1) for every (a,B) € U x V with f(,8) =1,
Prob(R(a, 8) = 1) > 1 and Prob(R(e,) = 0) =0, and

(ii) for every (o, B) € U x V with f(a, B) =0,
Prob(R(a, 8) = 0) > 3 and Prob(R(a,8) = 1) = 0.

The Las Vegas communication complexity of f is
Ivee(f) = min{cc(R) | R is a Las Vegas protocol for f}.
The one-way Las Vegas communication complexity of f is

Iveey (f) = min{cc(R) | R is a one-way Las Vegas protocol for i

Randomized Communication Protocols (A Survey) 9

We present a simple example of a one-way Las Vegas protocol. More involved
ideas for the design of Las Vegas protocols can be found in Section 4. Consider
the function Index, : {0,1}" x {1,2,...,n} - {0,1} defined as follows?

Index, ((z1,z2, ..., Tn), j) = z;.

A Las Vegas one-way protocol D for Index,, can be described as the pair (Prob,
{D1, D2}), where

(i) Prob(Dy) = Prob(Dj) = %,

(i) Dy = (D13, Dr1,1), where D;; sends the first half a;...ajz) of its in-
put a1 ...an to Dyyy. Dy outputs aj if the input j of Dy belongs to
{1,2,...,[51}. If 5 > [§], then Dy;; outputs “7”,

(ii) Dy = (Dr2,Dr12) where Dy, sends the second half Q3141 On of its
input a; ..., to Drra. D12 outputs « if the input j of Dyj 2 belongs to
{I31+1,...,n}. If j < [§], then Dj; 3 outputs “?”.

Another possibility to describe D is as follows.

Las Vegas one-way protocol D = (Dy, Dyy) for Index,,.

Input: (o,j7),a=a;...a, € {0,1}", j € {1,...,n}.
{ Dj gets the input a, and Dy gets the input j.}
Step 1: D; chooses a random bit » € {0, 1}.
{ Note, that Dy knows r, too.}
If » = 0, then Dj sends the message aja;. .. arsy.
If 7 = 1, then Dy sends the message ara141072742- .. @n.
Step 2: If r =0and j € {1,2,...,[5]}, then Dy outputs o;.
If r =1and j > [%], then Dys outputs a;.
Else, D outputs “?”.

In what follows we shall prefer the second form of the description of random-
ized protocols. Clearly, D never errs, and the probability of giving the output
“? is 1 for every input (a,j) € {0,1}" x {1,...,n}. The communication com-
plexity of D is [%].

Note, that the constant % bounding the probability of the output “?” in the
definition of (two-way) Las Vegas protocols is not essential from the asymptotic
point of view. Instead of giving the output “?” a Las Vegas protocol may start
a new communication from the beginning with new random bits. If it outputs
“? only if it reaches “?” in k independent computation attempts, then the
probability to obtain the output “?” decreases from % to 51,;, but the communi-
cation complexity increases only by a factor of k in comparison with the original
protocol.

Definition 4. Let f : U x V — {0,1} be a finite function. We say that a ran-
domized protocol R = (Prob, S) is a (public) one-sided-error Monte Carlo
protocol for f if

3 Observe, that Index, can be also viewed as a Boolean function if one represents the
numbers 1,2,...,n by binary strings.

10 Juraj Hromkovié

(i) for every (a,B) € U x V with f(a,B) =1,
Prob(R(a, 8) = 1) > 3, and

(i) for every (a,8) € U x V with f(a,B) =0,
Prob(R(a,8) =0) = 1.

We say that a randomized protocol R is a (public) two-sided-error
Monte Carlo protocol for f if, for every (a,3) € U x V,

Prob(R(a,) = (@) > °.

The one-sided-error Monte Carlo communication complexity of f
]

Imccce(f) = min{cc(R) | R is a one-sided-error
Monte Carlo protocol for f}.

The two-sided-error Monte Carlo communication complexity of f is

2mccce(f) = min{cc(R) | R is a two-sided-error
Monte Carlo protocol for f}.

Because of the condition (ii) of one-sided-error Monte Carlo protocols it is
clear that private one-sided-error Monte Carlo protocols are a restricted version
of nondeterministic ones. For the public randomized protocols defined here we
obtain

nce(f) < Imecee(f) + the number of random bits

for every finite function f.

Similarly as in the case of Las Vegas, the constant % in the inequality
Prob(R(a,8) = 1) > 1 is not essential for one-sided-error Monte Carlo from
the asymptotic point of view and so one-sided-error Monte Carlo protocols can

be viewed as a restricted version of two-sided-error Monte Carlo protocols, too.

Ezample 1. (based on [19]) The idea of a randomized protocol is based on the
abundance of witnesses method for the design of randomized algorithms.
Let f be a Boolean function. A witness for f(y) = a is any binary string
4, such that using & there is an efficient way to prove (verify) that f(v) = a.
For instance, any factor (nontrivial divisor) y of a number z is a witness of
the claim “z is composite”. Obviously, to check whether £ mod y = 0 is much
easier than to prove that z is a composite without any additional information. In
general, one considers witnesses only if they essentially decrease the complexity
of computing the result. For many functions the difficulty with finding a witness
deterministically is that the witness lies in a search space that is too large to be
searched exhaustively. However, by establishing that the space contains a large
number of witnesses, it often suffices to choose an element at random from the
space. The randomly chosen item is likely to be a witness. If this probability
is not high enough, an independent random choice of several items reduces the
probability that no witness is found.

Randomized Communication Protocols {A-8urvey) 11

The framework of this approach is very simple. One has for every input v
a set CandW(y) that contains all items candidating to be a witness for the
input y. Often CandW () is the same set for all inputs of the same size as .
Let Witness(y) contain all witnesses for v that are in CandW(v). The aim is
to reach a situation where the cardinality of Witness(«) is proportional to the
cardinality of CandW (v).

To design a randomized protocol for Ineq,, we say that a prime p is a
witness for a # 3, o, € {0,1}", if

Number(a) mod p # Number(3) mod p.

For every input (o, 8) € {0,1}" x {0,1}", CandW(¢, §) is the set of all primes
from {2,3,...,n%}. Due to the Prime Number Theorem we know that |[CandW

(a, B)| is approximately %; Now, we estimate the lower bound on |Witness
(a, B)|. Let a # 8. If, for a prime p,

Number(a) mod p = Number(3) mod p, (1)

then p divides h = Number(a)—Number(3). Since h < 2™, h has fewer than n dif-
ferent prime divisors.* This means that at most n — 1 primes from CandW(a, 3)
have the property (1). So,

|Witness(a, v)| > |CandW{(a,)] — n + 1. (2)
Now, we use (2) to design our randomized protocol.

One-sided-error Monte Carlo protocol R = (R, Ryy) for Ineq,,.

Input: (o, 8) € {0,1}" x {0,1}"
Step 1: R; chooses uniformly a prime p € {2,3,...,n%} at random.
{Note, that R;; knows this choice of R;.}

Step 2: R; computes s = Number(a) mod p and sends the binary representa-
tion of s to Ryj.
{Note, that the length of the message is [log, n?] < 2 [logy n].}
Step 3: R;; computes ¢ = Number(3) mod p.
If ¢ # s, then Ry outputs 1 (“accept”).
If ¢ = s, then Ry outputs 0 (“reject”).

We show that R is a one-sided-error Monte Carlo protocol for Ineq,. If
a = f, for an input (o,8) € {0,1}" x {0,1}", then Number(a) modp =
Number(f) mod p for every prime p. So,

Prob(R(a, B) = “reject”) = 1.

Let a # 3, i.e. Ineq,(a,B) = 1. Due to the inequality (2), the probability
that R chooses a prime with the property (1) is at most

{CandW (e, B)| — |Witness(a, v)| < n—1
|CandW(a,)| ~ |CandW(ae, 8)|
4 Observe, that n! > 2",

