Lecture Notes in Computer Science, 47

Methods of Algorithmic
Language
Implementation

Edited by
A. Ershovand C. H, A, Koster

- Lecture Notes in
Computer Science

1y
]

Edited by G. Goos and J. Hartmanis

47

Methods of Algorithmic
Language Implementation

Edited by A. Ershov and C. H. A. Kostel

| Sprmger Verlag o
Berlin - Heidelberg - NewYork,1977

.Editorial Board
P. Brinch Hansen - D. Gries - C. Moler G. Seegmuller J. Stoer
N. Wirth

Editors .
Prot. A. Ershov

Computing Center
Novosibirsk 630090/USSR

Prof. C. H. A. Koster
Faculteit der Wiskunde

en Natuurwetenschappen
Katholieke Universiteit
Toernooiveld

- Nijmegen/The Netherlands

AMS Subject Classifications (1970): 68-02, 68 A30, 90A05. 90A15
CR Subject Classifications (1974): 4.12, 4.2.

ISBN 3-540-08065-1 Springer-Verlag Berlin - Heidelberg - New York
ISBN 0-387-08065-1 Springer-Verlag New York - Heidelberg - Berlin

This work is subject to copyright. All rights are reserved, whether the whole
or part of the material is concerned, specifically those of translation, re-
printing, re-use of illustrations, broadcasting, reproduction by photocopying
machine or similar means, and storage in data banks.

Under § 54 of the German Copyright Law where copies are made for other
than private use, a fee is payable to the publisher, the amount of the fee to be
determined by agreement with the publisher.

© by Springer-Verlag Berlin - Heidelberg 1977

Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 43210

Preface to the English Edition

On September 10-13, 1975 Novosibirsk, USSR, a Symposium on Methods

for the Implementation of Algorithmic Languages was held, attended

by 58 Soviet delegates and 11 from outside the Soviet Union, including
5 Western delegates, invited by Prof. A.P. Ershov, who organised the
Symposium. .

The Russian edition of the proceedings of this Symposium contained

33 papers; 11 have not been offered for inclusion in the present
English publication. Among the papers (left out are some that are

moure tutorial in nature: for others, the reason for their exclusion
may be in the technical problems in translating the paper into English
and typing it in a camera-ready form. Those readers with a sufficient
command of the Russian language are therefore referred the the Russian
text of the proceedings, which was printed at the Computing Centre

of the Siberian Branch of the Academy of Sciences in Novosibirsk.

The English edition of the proceedings allows an assessment of the
state of the art in compiler writing in the Easterm countries, and
of the main areas of interest (especially by the choice of Western
invitees). I will not try to make such an assessment, but will just
mention some of the points that struck me: ’

- Great interest in translator writing systems.

- Relatively large concern for syntax analysis methods
(three papers). :

- Unique interest in multi-language translators (four
papers, including three on aspects of the BETA System,
a combined implementation of PASCAL, PL/1, ALGOL 68
and SIMULAR 67: three more papers on the BETA systems
appearing only in the Russian edition).

- Relatively little interest in MOHLLs and SILs (one
paper in the proceedings on the Jarmo language).

- Interest in very high level languages.

- Relatively large stress of the fundamental and the
formal, rather than a pragmatic approach.

- . An earnest desire to form part of the international
computing community and food awareness of western
professional literature. (witness, e.g., references
of papers; in the other direction, the information, or
maybe the interest, is much smaller).

- A strong tradition in algorithmic languages
(preponderance of ALGOL, leading through the ALPHA
language to the BETA system. The FORTRAN problem
hardly arises).

- An exemplary faithfulness to language standards
(£full implementation of internationally accepted
language, rather than egotistic subsets, ameliorations
or home brew).

A list of the contributors at this symposium is given on page VII.

It is hoped that these proceedings will allow insight in the work
being done on compilers in the Soviet Union, and a view of the
persons doing it, leading to responsible communication and
collaboration between eastern and western scientists.

C.H.A. Koster.

vii

Soviet Participants

Institute of Automation and Control, Wladywostok
A.S. Kleshchev :

Research Institute of Appl. Math. and Cybernetics, Gorki
Yu.L. Ketkov

Kiev State University, Kiew
V.N. Red'ko

Institute of Cybernetics of the Ukrainian Ac.Sc., Kiew
I.V. Velbitsky

Yu.K,Kapitonova

G.E. Tseitlin

Kishenev State University, Kishenev
D.N. Todoroy

Institute of Math. and Comp. Center of the Moldavian Ac.Sei.,
M.G. Gontsa Kishenev

Pavlov Institute of Physiology, Leningrad
V.L. Tyomov

Comp, Center of Leningrad State University, Lenlngrad
-G.S, Tseitin
""A.N. Terekhov’

Leningrad Branch of Central Inst. of Mathematical
Economics of the USSR Ac.Sci., lLeningrad
I.V. Klokachev

Institute of Math., of the Byelorussian Ac.Sei., Minsk
G.K. Stolyarov
N.V, Shkut

All-Union Institute of Scientific and Technological
Information, Moscow
AN, Maslov

Computing Center of the USSR Ac.Sci., Moscow
V.M. Kurochkin

Computing Center of Moscow State University, Moscow
E.A. Zhogolev
. V.Sh.Kaufman

Institute of Applied Mathematics, USSR Ac.Sci., Moscow
Yu .M,.Bayakovsky
E.Z. Lubimsky

Instltute of Precise Mech. and Comp, Machinery of the
USSR Ac.Sci., Moscow
D.B. Podshivalov

Institute of Electronic Control Computers, Moscow
L.A. Kalinichenko

Research Center of Electronic Computing Machinery, Moscow
A.S. Markov

Vil

Central Institute of Mathematical Economics, Moscow

M.R, Levinson

Computing Center of Rostov State University, Rostov-on-Don

A.L. Fuksman
S.P. Kritsky

Research and Development Institute of Technology, Tallin

E.H. Tyugu

Institute of Math. of the Siberian Branch of the USSR-Ac.Seci.,

Novosibirsk
V.N. Agafonov
L.T, Petrova

Computing Center of the Siberian Branch of the USSR Ac.Sci.,

Novosibirsk
. Bekasov
. Baers
. Gorodnyaya
. Grushetsky
. Ershov
. Zmievskaya
. Kasyanov
. Katkov
. Kozhukhina
. Korneva
. Kozlovsky
. Kotov
a.Levin
. Leonov
. Mishkovich

o <ntiu<<{<tt><t>»
UR<OEPROZC 0| <»

A.S, Narinyani
V.A, Nepomnyashchy
O.N. Ochakovskaya
Yu.A.Pervin

S.B. Pokrovsky
1.V, Pottosin
A.F, Rar

V.K. Sabelfeld
F.G. Svetlakova
G.G. Stepanov
M.B. Trakhtenbrot
B.G. Cheblakov
L.B, Efros

T.S. Yanchuk

Foreign Participants

GDR

I. Kerner

J. Lehmann

R. Strobel
Poland

J. Borowiec

Z. Pawlak
Czechoslovakia
J. Kral

Y

Oreat Britain
B. Marks

Berlin (West)
C.H.A. Koster
UsSA

J. MacCarthy
D. Schwartz
France

B, Lorho

-Lontents

Preface to the English Edition
C.H.A. KOSTER

List of Participants

Problem-oriented Languages and DEPOT Implementing System
N. JOACHIM LEHMANN

Semantic Attributes Processing in the System DELTA
BERNARD LORHO

Usability and Portability of a Compiler Writing System
OLIVIER LECARME

Semantic Unification in a Multi-Language Compiler
SERGEI POKROVSKY

‘<

Procedure Implementation in the Multi-Language Translator

V.K. SABELFELD

Program Structure Analysis in a Global Optimization
V.N. KASYANOV, M.B. TRAKHTENBROT

Metalanguage for formal definition of Semantlcs of
Programming Languages
I.V. VEL'BITSKIY

Some Principles of Compiler Constructions
A.L. FUKSMAN

Almost Top-Down Analysis for Generalized LR(K) Grammars
JAROSLAV KRAL

An Approach to the Automation of Constructlng Multilanguage

Translating Systems
M.G. GONTSA

Metaalgorithmic System of General Application (MASON)
V.L, TEMOV

A Simple Translation Automaton Allowing the Generation
of Optimized Code

P. BRANQUART, J.P. CARDINAEL, J. LEWI, J,P. DELESCAILLE,
M. VAN BEGIN

Some Automatic Transformations of CP-Grammars
ROLAND STROBEL

Several Aspects of Theory of Parametric Models of
Languages and Parallel Syntactic Analysis
G.E. TSEYTLIN, E.L. YUSHCHENKO

Page

Vil

21
41
63
8o

\90

105
129

149

173

188
209

218

S 231

\'

‘A Sublanguage of ALGOL 68 and Its Implementation

I.0. KERNER

A Programming System with Automatic Program Synthesis
E.H., TYUGU

Experimental Implementation of SETL
D.Ya. LEVIN

MIDL: A Hybrid Language of Medium Level
E. DEAK, M, SHIMASAKI, J. SCHWARTZ

The Data Structures Representation in'ﬁachine;Oriented
Higher Level Language
B.G. CHEBLAKOV

'On the Macro Extensiqn of Programming Languages

V.Sh. KAUFMAN

Pragmatics in a Compiler Production System
JAN BOROWIEC

CDL-A Compiler Implementation Language
C.H.A. KOSTER

Page

246

251

268

277

290

301

314

341

Problem-oriented Langusges and DEPOT Implementing System

N. Joachim :Lehmann
Technische Universitat Dresden
Sektion Mathematik

1. Trends of Programming Languages

The large scale application of electronic information processing
would have been unthinkable without the supply of suitable programming
languages. It was thus possible to include specialists of various
fields immediately in program preparation of computer installations
without having to subject them to unhendy programming with machine
commands. FORTRAN marked a successful start, whereas ALGOL 60 was the
first mathematically sophisticated conception of an algorithmic
language with a formalised syntax description. Both languages were
highly oriented to numerical activities.

After almost 20 years of programming language development, two
contradictory trends currently exist:

- a differentiation in numerous (smaller) special languages with
limited application, but especially problem-friendliness and
easy learnability and handling;

~ an integration towards developing only a few extensive universsl
languages with expanded application. Proven langusge conceptians
and practicel data structures are standardized and compacted.

Both trends are objectively founded and will continue to develop; in
natural languages these include special lsnguages problem-oriented to
parts of objectivé reali%y as highly specialised tools of intellectual
work; whereas common languages supply the foundation for their defi-~
nition and offer crosslinks between special disciplines. In computer
application this would seem to represent the relationship of special
and universal programming langusges. However, the thus implied
linkage of initislly contradictory developmental tendencies must be
implemented in practice first of all. This has essential conseguences
on translator engineering, the theory of higher programming languages

as well as their application.

The significance of programming languages is thus expressed in a
manner as unnoticed in the original intent. With increasing certainty
of handling, most users change to "their programming language'.

It is no longer a tool, but moreover becomes guideline of user
thinking and presentation manner. The formation of a methodically
built and well structured prograsmming language which promotes

logicael thinking and acting must be emphatically stressed. Only then
can special languages be sensibly created.

2, Special Lenguages and Language Systems [8]

UniVersality, avallability of all important language conceptions and
a good logical structure dre the advantages of a properly constructed
universal programming language. This entails however a few short-
comings: the extent makes handling and learning difficult. In any
case, missing problem orientation must be compensated by a certain
breadth of presentation and by utilizing expansion mechanisms at the
expense of the language. The high expressability of the universal
language is only poorly exploited in each individual case.

This is where problem-oriented programming languages come in, They
employ the respective application termini and consider “pet" ways of
thinking and working. In operations, formulas and procedures the
basic algorithms for the behavior of complete subsystems of the
respective work object and associated linking relations are included;
the langusge is oriented to task structure. Thus decisive relationms
and influences are highlighted and the creative work of man is
-undivided on the essence of his task. The limitation to a special
field and low redundance make them relatively easy to learn amd handle
for the individual specialists. The significance is demonstrated by
the vivid saying of H. Scholz, a logic specialist, who 20 years ago
stated [11]:

"It is always amazing to see what good symbolics can do. They show
the structure symbolized by them to the intellectusl eye as X-rays
produce the skeleton of man to the naked eye.'

Subject~oriented programming languages are thus matched to parts

3

of infinitely varied reality and cannot be replaced by universal
languages without loss of efficiency.

In practice special languages are drafted and determined under
varying premises:

- few simple language constructions are used to make problem-
oriented descriptions of very restricted job classes. Easy
learnability and handling without previous knowledge dominate.
Formations of this kind ~ often hardly worthy of the term
language — are frequently used in operating systems to
describe editing imstructions and similar,

- precondition is familiarity with a universal programming
language, the orientation of which to special job classes is
obtained by extensions and additional elements, SIMULA based
on ALGOL 60 for implementing simulation jobs is a known
ekample.

Whereas in the second case the question of interdisciplinary cross—
links between various special languages seems solvable if proceeding
from a standardized basic language, the first case makes no notice
of it. '

In implementing many special languages translators (or interpreters)
are required to transform each program directly or indirectly through
an intermediate language with compiler into the machine command list.
The intermediate lamguage can be selected as very elementary and
machine-oriented or on a higher level. Approach method decisions can
be made from the standpoint of tramslator or as dictated by communi-
cation practice. Here the latter, application-oriented standpoint is
brought to the fore, which surely would lead to a technically proper
solution.

3. Basic Languages and Pretranslator Principle

Working with a multitude of specialvlanguages definitely requires the
use of universsl compilers or compiler-writing systems. Single manual
or computer-aided production must in our day be limited to individual
cases in which either highly effective, optimizing compilers are
required or other special features must be considered.

Precondition for each language transformation is a description of
syntax and semantics. of the respective special language. Instead of
going into too elementary description forms — Backus-Naur — or 2
stage Wijngaarden grammars only as examples—let reference be made to
an appropriate high-level programming language as problem-oriented
tool, This would permit describing semantics in a form matched to

the example of common language; in addition the relationship between
several special languages is maintained and work with language
families is possible. Furthermore the definition of special languages
by universal ones relieves the latter by constructions which should
be kept available for unhampered language extensions. Thus the whole.
system includes not only the advantages of universal languages but
also those of special description means, giving in the field of
programming a working method equal to the relationship of special

and common language. It confirms as well the well known pretranslator
principle: (Fig. 1).

Control Control Control
parameters parameters parameters
for special for special | ———— for gpecial
tanguage language {anguage
Fl F; anq
3 n t
' Preprocessor ifput information | !
L= | F T —— -
. Yy ¥ %
v Preprocessor ¢
i 0
iy ——— o o"‘.o Fi—»A o N e Pla)
Source program, | %o ¢ | equivatent
written in special) le‘.ﬂﬂ"a"_' J
language Fi - _ _Awritten in
A= target E’E‘fgi —_— language A
' -
{ Compiler
——————— A—» M EE——— 0‘ M)
(with optimization) Object program,
written in
machine code
Fig. 1 Pretranslator principle

The basic-target language of the system (called "basic language" in
the following) must be very logical, well structured and universal.,
Its level should be a "common language", but in no mammer a conven—

tional assembler —though the term basic language is still often used
in this sense. Regardless of considerable shortcomings, PASCAL,

AIGOL 68 and PL/1 are currently best applicable for this purpose,

4, DEPOT Specisal Language System

At the Mathematics Departmeﬁt of the University of Technology of
Dresden in 1973 the DEPOT (DrEsden PrOgram Transformation) special
language system was finished as fully sutomatic implementing system
according to the pretranslator principle. Not only the special
languages to be transformed, but also basic ones are mostly free
selectable., In Dresden often BESM 6/ALGOL is used as latter. This
offers the possibility of character string menipulation, library work
as well as acce8s to FORTRAN input-output statements, and includes a
well optimizéd compiler, The use of machine code as target langusge
is permissible, however with limitations in problem-orientation and
simple handling.

The basic structure of the system is shown in Fig. 2 .-

DEPOT - MS - programes describing special languages F£i (i-1,...)

System DEBOT/BESM6
Stores all information on implemented (anguages Fi
and_controls the transformation process Q== PcA)
B i Y 1 :)
R i
4 T 1 T T
| | | 4 I
: I I' acceptor |
I I Jtor Qi !
I | Mcontext -
Py ’ free phrase
| Structure ¢ int
additional ntermediats, ;
i) 3 Creation
ﬁ(r,,) texical [gctiong) storage I of linear P
anatysis |- | for lists, target . -
Source program, (scanner) controt text, Transformed
weritten in gpecial | Generator variables, Decoding (object)
tanguage Fy I |Cstructured texts, ... program Fy,)
I las the
Pass 1 Pass 2 Pass 3
Transtormation System

Fig. 2 DEPOT special language system

DEPOT-MS is a problem—oriented meta~language to describe syntax and
sementics of special languages Fi relative to the significance of
basic language A, The semantics are thus defined through the
connected compiler for A by the machine language. Each DEPOT-MS
program describes a special language to which a scanner (%o describe
lexical elementary units), a program acceptor (with context-free
basic structure), such a language generator and a decoding program
for the final structure of the object program P p) are automatically
produced. These subprograms are then available at random in DEPOT
operating and library system. As soon as a program Q(F >,described
in special language Fy,is run in the associated acceptor becomes
active. It controls the language generator which starts biallding an
equivalent program in the target language. Both procedures need not
be synchronized. The acceptor as well as generator can refer to
mutually stored lists and stacks, thus picking up and generating
widely independent text ranges. The significance of actual texts is
thus referred to the semantics of the basic language, considered to
be known,

The function of the acceptor analogous to the generator is described
by an especially dynamic grammar which acts as context-free at all
times but considers additionally list contents and variables reser-
vations of an intermediate storage 2 as values of syntactical or
control variables. Z is filled up or transformed by actions scattered
in the grammar production rules during accepting or gemeration. These
actions are here about 10 standardized instructions which can be
imbedded and executed in production rules if the syntactical analysis
has penetrated to them, This covers all previously — gquite extended —
required context dependenéies. (An appropriate proof of completeness
in reference to sufficiently large language class is still missing.)

The DEPOT program system is currently implemented on the BESM 6
computer and written in BESM 6/AIGOL. A transformation to PASCAL
which offers about the same range of action is executable without
difficulty. According to the availability of these lenguages systems
portability is ensured,

Program range of the whole system is marked by 5,000 ALGOL
instructions. A special operating system supports work, especially

L)
error information and if required print outs, setting up libraries

for standard procedures and many more are intended to ease imple-
menting special languages and translating special language programs.

5¢ Problem—oriented Language Description

It is decisive for the easy handling of DEPOT special language system
that the description of-required grammars does not depend immediately
on Backus-Naur or similar schemes. It seems to be a contradiction in
itself if the description of problem~oriented languages is only
possible with elementary production rules of not sufficient
transparence in their effect. Who would want to execute in numerical
practice a root calculation on the basis of Markow's algorithm,

This basic philosophy determines the essential differences to many
other language description methods, e.g. [3], [10]. A comparable
solution to DEPOT represents CDL [6] to a certain degree., The DEPOT-
MS meta-language in langusge description proceeds on problem—
oriented word structure functions, the structure of which is also
algebraically founded.

5.1 Context-free Syntax Representation with Word Functions

(11, (4], [51, [7]

Let), denote a finite alphabet, },* the set of words over ¥ with e as
empty word. The power set P = Pot(L*) of L* is a lattice in referencé
to set theory operations U, N with the inclusion as associated order
relation; related to concatenation (symbol ¢ receives highest priority °
and may be left out)

oeB =ap = {ab|V¥a ¢ «, Vb ¢ B} , 0,8 e P

and the union result in a semiring.

For calculations in algebra (P,*, U) various elementary functions
have proven purposeful. Only the simplest are listed which are useful
in the following example. (In the following all elements of P which
have only one letter (terminals) of }, are termed by the same, For

the union we have the simplification |.)

With @, oy, Bse P and J= {0,1,2,.0.} are defined:

J

a) conditional identity
a4 in = true
(1) <oc>p := by case p

otherwise
with p as a predicate independent of « (e.g.: <°‘>j>o= o
if 1 > 0, = £ otherwise).

b) selection function

(@) (ogpeeeryy 1= {Zi :;:e ’1 € {1y0.4,n0}
¢) power function
(3) ol :={0Loocos".°a ggi l:lgfl) Cmel,
o= et =
m time
d) product
i i m <
(4) ilenoci :={ocn.°0cn+jo...o(xm ii m;z , Myn €J ,

e) list product
z € for m<n
(5) H o B = ° o >
i=n< i;> CPpeeen 4BL 1% for mZ n .

The sets of numbers and of simple arithmetic expressions are used as
application examples presented by AIGOL 60.

To avoid confusion terminals are occasionally placed in brackets

{ }, | serves as separation mark.

with & := {0|1|2]3]4]5]6]7|8]9}, o := {+|-|e} follows the number
presentation

(6) {numbers} := 0<i Y e 820 550 99109 100 8¥) and 144k Z 1.
1J 9

From w := {+|=|+|/]#|+} and & := {numbers} U {variables}
U {functions} U<{‘(i_f:}ooo{))>
we receive for arithmetic expressions

) {ii‘i“éi?} = o¢ o ote %D
i’

expr. qie] i=1

T >
with je{1,2,000} and n(r) = 121(pi-qi) C 8 ﬁ)r i

as context conditions,

A

[XN SN

