

4990117642

THE SCIENCE OF BIOLOGY

SECOND EDITION

WILLIAM K. PURVES

Harvey Mudd College Claremont, California

GORDON H. ORIANS

The University of Washington Seattle, Washington

A GIFT OF
THE ASIA FOUNDATION
DISTRIBUTED BY
SHANGHAI INTERNATIONAL STUDIES
UNIVERSITY LIBRARY

美國亞洲基金會贈書上海外國語學院圖書館分母

非賣品

SINAUER ASSOCIATES INC.

PUBLISHERS

SUNDERLAND, MASSACHUSETTS

To Jean and Betty

LIFE: THE SCIENCE OF BIOLOGY

Second Edition

Copyright © 1987 by Sinauer Associates Inc. All rights reserved. This book may not be reproduced in whole or in part, for any purpose whatever, without permission. For information address Sinauer Associates Inc., Publishers, Sunderland, MA 01375.

Printed in U.S.A.

Library of Congress Cataloging-in-Publication Data

Purves, William K. (William Kirkwood), 1934–Life, the science of biology.

Includes indexes.
1. Biology. I. Orians, Gordon H.
II. Title
QH308.2.P87 1987 574 86-31340
ISBN 0-87893-733-1

Designed by Betty Binn Graphics/Martin Lubin.

THE COVER

Black-necked stilts (*Himantopus mexicanus*): A painting by J. F. Lansdowne, which appears as Plate 25 in his book *Birds of the West Coast:2* (© 1980 by M. F. Feheley Artists Company Ltd. All rights reserved).

The black-necked stilt breeds on shallow, alkaline lakes and ponds in arid and coastal regions in western North America, from Washington state south through Central America and on into temperate South America. Its unusually long legs allow it to wade far out into ponds to capture the aquatic insects and crustaceans upon which it feeds. The simple nest in which the female lays four large eggs is constructed in short vegetation, in shallow water near the edge of a pond. The young are able to walk and feed themselves from birth and follow their parents to rich foraging grounds. Males and females look alike in this species, and share in incubation and guarding of the young. Northern populations are present on their high-latitude breeding grounds only in the spring and summer, returning to lower latitudes for the winter.

PREFACE

An excellent textbook is more than a collection of accurate statements of fact, supplemented by good illustrations. The crucial attribute of a fine textbook is its ability to *explain* things so that students can understand and appreciate them. As authors, our overriding goal at all times has been to explain biological concepts and processes clearly and thoroughly—a goal that guides our classroom teaching as well.

We have been at great pains, throughout the book, to develop each topic until it has been explained or illustrated sufficiently to meet the needs of both the student who requires extra help and the student who aspires to a greater degree of understanding. At the same time, we have tried not to beat topics to death: Material that is inherently so clear that simple descriptions suffice is treated succinctly.

We have given particular attention to explaining and illustrating the most fundamental concepts at each level of biological organization. Among these are cellular energetics (especially basic thermodynamics, the chemiosmotic model, and photophosphorylation); cellular physiology (especially membrane receptors, second messengers, and the mechanisms of resting and action potentials and of muscle contraction); genetics, including both Mendelian and molecular genetics; the mechanisms of evolution; and the interactions among organisms that structure ecological communities.

Every instructor has a unique approach, a personal style, and a particular set of preferences of material to teach. Thus, a textbook must have more material than any one instructor is likely to use. Neither of us teaches in a course in which all of the topics presented here are taught at this level of detail. Nonetheless we offer a sufficient variety of material so that each instructor or team of instructors may select those topics that best suit their needs. There is no single best order of presenting topics in introductory courses; therefore, we have written this book in such a way that instructors may select a number of different sequences of chapters. However, within each of the major sections we have followed a logical progression of topic development.

It is sometimes said that certain important topics are "too difficult" or "too advanced" for students of introductory biology. This may simply mean that those topics require more careful explanation. With adequate presentation, many seemingly difficult topics become clear. Between us, we have been teaching for about fifty years, and we have taught students of widely differing aptitudes. Our experience supports our optimism about the ability of students to learn material if it is carefully explained and clearly illustrated. In the classroom and in this book we have not shied away from topics sometimes regarded as too advanced. We have introduced—and explained—such topics when they clarify other, "less difficult" concepts, or when they contribute to a more complete, more understandable story.

Some topics are more readily understood in the context of their historical development, or of the experimental background of our current knowledge. Space limitations make it impossible to introduce all or even most topics in this way, but we have used this approach where it seems most appropriate. The historical approach is particularly evident in Chapter 13 (Molecular Genetics of

Prokaryotes). Heavy emphasis on experimental evidence occurs widely throughout the book, but see especially Chapter 9 (Photosynthesis), Chapter 12 (Nucleic Acids as the Genetic Material), Chapter 14 (Gene Expression in Eukaryotes), Chapter 15 (Animal Development), Chapter 18 (Plant Development), and Chapter 32 (Origins).

In preparing a second edition of our book, we have taken advantage of the feedback we received from the many users of the first edition—incorporating many of their suggestions, profiting from their (and our) experience in teaching from the book, and correcting the errors (of both commission and omission) that inevitably found their way into the first edition. We also have included some of the most recent findings in molecular and cellular biology and in mechanisms of learning, and we have included, throughout the book, the relevant material discovered by application of recombinant DNA technology. This is reflected in particular by changes in the chapters on endocrinology, neurobiology, eukaryotic molecular genetics, origins of life, taxonomy and phylogeny, and macroevolution. Several chapters are now linked by new emphases on second messengers, on gated channels in membranes, and on membrane receptors. In our new organization of some of the material, developmental biology became one of the major section topics (it now forms the fourth of eight sections). We continue to introduce the special biology of plants by way of their development, but the basics of plant structure are now treated at the beginning of that chapter, as they should have been in the first edition. Also, each of the five kingdoms now has its own chapter in the section on the diversity of life. We have revised and expanded the introductory chapter (now two chapters) to orient the student more effectively for what follows, and to provide a more thorough discussion of scientific methods.

We have significantly increased our coverage of human genetics, of plant adaptations, of eukaryotic molecular genetics (now a full chapter), of homeostasis and thermoregulation (also a full chapter), of human evolution, of taxonomic methods, and of ecological succession. Some of these additions were in response to users' requests; others represent changes in the state of the art; still others represent our own changed assessment of certain fields. Additions necessitated complementary deletions, if the book was not to grow beyond all reason. Rather than eliminating topics, we have attempted to tighten the discussions in certain areas, and to eliminate instances in which unnecessary detail (for an introductory course) had appeared in the first edition. Several diagrams that were difficult for some students of the first edition have been redesigned. We hope that the great majority of our readers will find these changes helpful.

As with the first edition, many of our colleagues (listed at the end of this Preface) have reviewed chapters in manuscript. All their contributions are much appreciated, and the book is far better for their willingness to help. We particularly thank Ron Calabrese, Rob Colwell, Arthur Forer, Larry Gold, Bertil Hille, Merrill Hille, Richard McIntosh, and Bruce Walsh. They stand out among an outstanding group of reviewers because they provided explicit recommendations for extensive improvements. We are also especially indebted to those reviewers who have been users of the first edition and whose warmth and loyalty to the book have brightened the many, long months of the revision process. We will appreciate any suggestions and criticisms that you may choose to offer as you use this edition.

We continue to be obligated to the authors of the earlier textbook *Life on Earth* (Sinauer Associates). In writing the first edition of *Life* we had unlimited access to figures and text from that book; some of that material is still present in the second edition of *Life*. Carl May, whose contributions to the entire illustration program in the first edition were crucial to its success, directed the photography program for this edition. Andy Sinauer continues to be the amiable but firm

publisher that he has always been, and his contributions to this edition have been too many and varied to enumerate here. The entire staff of Sinauer Associates has conspired to make our task more enjoyable than it would otherwise have been, but we are still pleased to be through writing for a while.

November, 1986

WILLIAM K. PURVES Claremont, California

Gordon H. Orians Seattle, Washington

REVIEWERS OF THE SECOND EDITION

R. Phillip Anderson, University of Wisconsin

Warren Burggren, University of Massachusetts/Amherst

Ronald Calabrese, Emory University

Robert Cleland, University of Washington

Norman Christiansen, Duke University

Robert Colwell, University of California/Berkeley

Jean De Saix, University of North Carolina

Michael Filosa, Scarborough College of the University of Toronto

Arthur Forer, York University

Stanley Gartler, University of Washington

John Gerhart, University of California/Berkeley

Scott F. Gilbert, Swarthmore College

Larry Gold, University of Colorado

Edward S. Golub, Purdue University

Michael Greenfield, University of California/Los Angeles

Virginia Hayssen, Smith College

Brian Hazlett, University of Michigan

Richard M. Held, Massachusetts Institute of Technology

Craig Heller, Stanford University

Henry Hespenheide, University of California/Los Angeles

Bertil Hille, University of Washington

Merrill Hille, University of Washington

Richard Howard, Purdue University

John Jaenike, University of Rochester

Gary Laverty, University of Delaware

Joseph Levene, Boston College

Karel Liem, Harvard University

Mark V. Lomolino, University of Arizona

Lynn Margulis, Boston University

J. Richard McIntosh, University of Colorado

James G. Morin, University of California/Los Angeles

David Raup, University of Chicago

Jerome Rovner, Ohio University

Daniel Rubenstein, Princeton University

Albert Ruesink, Indiana University

Millard Susman, University of Wisconsin

Daryl Sweeney, University of Illinois

Kathryn Tosney, University of Michigan

Barbara Wakimoto, University of Washington

J. Bruce Walsh, University of Arizona

Peter Webster, University of Massachusetts/Amherst

David Woodruff, University of California/San Diego

CONTENTS IN BRIEF

ld 23	
5	
ł	
Genetics of Prokaryotes 329 ession in Eukaryotes 361	
nt Development 478 production in Fungi and Plants 506	
nts 555	
(00	
Gas Exchange and Transport in Animals 633 Excretion and Osmoregulation 663	
910 30 43 969	
10	
Populations 1112 ations 1132 153	
	12

CONTENTS

PART ONE BEGINNINGS I

CHAPTER ONE

THE SCIENCE OF BIOLOGY 3

A brief history of the earth 3
Biology: The science of life 6
The methods of science 8
Generating hypotheses 10
Testing hypotheses 10
Science and nonscience 12
Major organizing concepts in biology 13

Early speculation about evolution 14 Charles Darwin and evolution 16 Objections to Darwin's theory 17 The importance of the world view 18 Questions beyond science 19 **Photo Essay** Eyes 20

CHAPTER TWO

LEVELS OF ORGANIZATION IN THE LIVING WORLD 23

The five kingdoms 23
Levels of organization 24
Molecules and aggregates 24
Box A Some kinds of organisms 26
Organelles and cells 28
Tissues and organs 29
Organisms and species 29
Populations, communities, and ecosystems 30

Emergent properties, reductionism, and synthesis 30

They are all successes! 31

Advantages of multicellularity 32

Effects of scale 33

Problems associated with multicellularity 35

The origin of multicellularity 35

PART TWO THE CELL 39

CHAPTER THREE

SMALL MOLECULES 41

Atoms, elements, and particles 42 **Box A** Charge and mass on the subatomic scale 42

Isotopes 44

Energy and stability 45

The behavior of electrons 45

Box B Radioactive isotopes as clocks 47

Chemical bonds 46

Molecules and reactions 49
Some quantities 50
Water 51
Ions, ionization, and ionic bonds 52
Acidity and pH 53
Polarity and the hydrogen bond 55
Some simple organic compounds 57

CHAPTER FOUR

LARGE MOLECULES 61

Lipids 62
Simple lipids and phospholipids 62
Other lipids 65
From monomers to polymers 66
Carbohydrates: Monosaccharides and oligosaccharides 66

Carbohydrates: Polysaccharides 68 Amino acids and proteins 70 A classification of amino acids 72 Higher levels of protein structure 75 Nucleic acids 80

CHAPTER FIVE

ORGANIZATION OF THE CELL 84

The cell as a fundamental unit 84
Common characteristics of cells 85
Features shared by all prokaryotic cells 86
Other features of prokaryotic cells 87
Box A The Gram stain and bacterial cell walls 88
Kinds of prokaryotes 90
Probing the subcellular world:
Microscopy 90

Box B The best-known prokaryote: Escherichia coli 91
Box C Types of light microscopy 92
The eukaryotic cell 94
Membranes in eukaryotic cells 95
Structures of the nucleus 97
Nucleus and cytoplasm 99
Mitochondria 101
Plastids 102
Origin of the eukaryotes 105

Endoplasmic reticulum 107
The Golgi apparatus 108
Exocytosis and endocytosis 109
Lysosomes 110
Microbodies 112
Vacuoles 113
Cytoskeleton, cilia, and flagella 114

Fine structure of the cytosol 117
The cell wall 118
Eukaryotes, prokaryotes, and
viruses 119
Fractionating the eukaryotic cell: Isolating organelles 119

CHAPTER SIX

MEMBRANES 124

Membrane structure and composition 125
Membrane lipids 125
Membrane proteins 127
Membrane carbohydrates 130
Microscopic views of biological membranes 130
Where animal cells meet 132
Tight junctions 132
Gap junctions 133
Movement of materials in the microscopic world 135

Box A Einstein's diffusion equations 136
Crossing the membrane barrier 136
An explanation of simple diffusion 138
Facilitated diffusion and active transport 139
Osmosis 140
Membranes and energy transformations 143
Receptors on the membrane surface 143
Other activities of membranes 146
Membrane formation and continuity 146

CHAPTER SEVEN

ENERGY, ENZYMES, AND CATALYSIS 150

Energy and the laws of
thermodynamics 151
Chemical equilibria 151
The equilibrium constant 153
Free energy and equilibria 155
Free energy, heat, and entropy 155
Reaction rates 156
Rate constants 158
Enzymes and selective catalysis 159
Box A Equilibrium constants and rate constants 159
Molecular structure of enzymes 161
Structures and actions of proteolytic enzymes 162

Prosthetic groups and coenzymes 163
Substrate concentration and reaction
rate 165
Enzyme inhibition 165
Coupling of reactions 167
Subunits, allosteric effects, and
control 168
Control of metabolism through allosteric
effects 170
Sensitivity of enzymes to the
environment 172

CHAPTER EIGHT

CELLULAR RESPIRATION AND FERMENTATION 175

Adenosine triphosphate, the cell's energy currency 176
The energy content of ATP 177
Photo Essay Bioluminescence 178
The transfer of hydrogen atoms and electrons 180
An overview of the release of energy from glucose 182
Glycolysis 184
Overview of the citric acid cycle 188

Reactions of the citric acid cycle 190
The respiratory chain 191
Oxidative phosphorylation and mitochondrial structure 193
Box A Dissecting the mitochondrion 194
Fermentation 196
Comparative energy yields 198
Connections with other pathways 199
Feedback regulation 200

CHAPTER NINE

PHOTOSYNTHESIS 205

Early studies of photosynthesis 206
The pathways of photosynthesis 207
Basic physics of light 208
Pigments 210
Absorption spectra and action
spectra 211
The photosynthetic pigments 213

The activation of chlorophyll: A "light reaction" 214

Cyclic photophosphorylation: ATP biosynthesis 215

Noncyclic photophosphorylation: Formation of ATP and NADPH + H+ 216

ATP formation in the chloroplast 218 **Box A** Photosynthesis in the halobacteria 219

Working out the Calvin-Benson cycle 220

The Cart stable product of carbon disc

The first stable product of carbon dioxide fixation 221

Box B Tools that cracked the Calvin-Benson cycle 222 What is the carbon dioxide

acceptor? 224

The photosynthetic carbon reduction cycle 226

Alternate modes of carbon dioxide

Alternate modes of carbon dioxide fixation 227

Photorespiration 229

Limiting factors and compensation points 230

Photosynthesis and cellular respiration 231

PART THREE INFORMATION AND HEREDITY 233

CHAPTER TEN

CHROMOSOMES AND CELL DIVISION 235

Mitosis 236
Chromosomal structure 241
The mechanism of chromosomal movement 242
Cytokinesis 242
The cell cycle 243

Box A Dissecting the interphase 244

Meiosis 249 Meiotic errors and their consequences 254 Mitosis, meiosis, and ploidy 255 Cell division in prokaryotes 255

Asexual and sexual reproduction 245

Ploidy and the karyotype 247

CHAPTER ELEVEN

MENDELIAN GENETICS 259

Mendel's strategy 260
Experiment 1 261
Segregation of alleles 263
The test cross 264
Box A Elements of probability 265
Incomplete dominance 267
The nature of alleles 268
Assortment of alleles 268
Box B Probabilities in the dihybrid cross 270
Linkage 270
Sex determination 271
Sex linkage 273
Mendelian ratios are averages, not absolutes 276

Fruit flies and bread molds 276
Recombination in eukaryotes 278
Box C Gene mapping in eukaryotes 279
Cytogenetics 280
The special problems of human genetics 282
Pedigree analysis 282
Box D Human genetic disorders 283
Somatic cell genetics 286
From genotype to phenotype 286
Quantitative inheritance and environmental effects 288
Non-Mendelian inheritance 289

CHAPTER TWELVE

NUCLEIC ACIDS AS THE GENETIC MATERIAL 294

What does the gene control? 294

Box A Complementary surfaces and the template theory 295

What is the gene? 298

The genetic material of a virus 300

The structure of the DNA molecule 301

Box B Complementary base pairing 305

Alternative structures for DNA 305

Structure of ribonucleic acid 305

Implications of the double helical structure of DNA 306

Replication of the DNA molecule 307

Replicating an antiparallel double helix 309

Transcription 312
Transfer RNA 314
The ribosome 316
Translation 317
The role of the endoplasmic reticulum 318
Box C Making the most of your DNA 319
RNA viruses and the central dogma 320
The genetic code 320
Mutations 323
Point mutations 324
Large-scale mutations 325
The origin of new genes 326

From DNA to protein 311

CHAPTER THIRTEEN

MOLECULAR GENETICS OF PROKARYOTES 329

Mutations in bacteria and bacteriophages 330

Box A Counting a population of

Episomes and plasmids 345

Transposable elements 346

bacteria 330
A sexual process in bacteria 332
Isolating specific bacterial mutants 335
The bacterial fertility factor 337
Transfer of male genetic elements 338
Sexduction 341
Recombination in viruses 341
Lysogeny and the disappearing viruses 342
Transduction 343

What do transposable elements do? 347
Control of transcription in
prokaryotes 348
Box B Gonorrhea and transposable
elements 349
Processing a polycistronic
messenger 349
Promoters 350
Operons 350
Repressible systems 352
Catabolite repression 353
Recombinant DNA technology 354
Cutting and splicing DNA 355
Plasmids as cloning vehicles 357
Prospects 357

CHAPTER FOURTEEN
GENE EXPRESSION IN
EUKARYOTES 361

Photo Essay Genetics in plant agriculture 362 Hybridization of nucleic acids 364 Eukaryotic gene structure 366 Splicing of RNA 367 Other aspects of mRNA processing 368 The stability of messengers 369 Liquid hybridization and repetitive DNA 370 Transposable elements in eukaryotes 370 Transposable elements and evolution 371 Gene duplication and gene families 371 Eukaryotic cells can be cloned, too 373 Sequencing DNA 373

Box A Determining the base sequence of DNA 374

Regulation of gene expression in eukaryotes 375

Box B Sleeping sickness and gene insertion 376

Transcriptional control: Gene inactivation 377

Box C Cassettes and the mating type of yeasts 377

Transcriptional control: Amplification of genes 378

Transcriptional control: Selective gene transcription 380

Translational control 380 Posttranslational control 381 Genes, viruses, and cancer 381 Origins of oncogenic viruses 382

PART FOUR DEVELOPMENT 385

CHAPTER FIFTEEN

ANIMAL DEVELOPMENT 387

Differentiation 388
Is differentiation irreversible? 389
Establishing multicellularity 390
Formation of the blastula 392
The formation of embryonic germ layers 393
Costrulation in chardete embryonic

Complementary DNA 373

Gastrulation in chordate embryos 396 **Box A** *Tracking migrating cells: Fate*

maps 397

Sheet to tube to brain: Forming the nervous system 398

Prospective fate and prospective potency 400

Induction and the organizer 401 Instructive versus permissive induction 403 Polarity in the egg and zygote 403 Aggregation behavior in embryonic cells 405

Box B Polarity in the sea urchin egg 406 Postembryonic development 407 Larval development and metamorphosis 408

Pattern formation and homeotic mutations 411

From *Drosophila* to other animals: The homeo box 412

Pattern formation: Positional information in developing limbs 413

Pattern formation: Regeneration 414
A complete catalog of development in a tiny worm 417

CHAPTER SIXTEEN

ANIMAL REPRODUCTION 420

Asexual reproduction 420
An overview of sexual reproduction 422
Sexual reproductive systems of animals 423
Vertebrate reproductive systems 424
Box A Advantages of hermaphroditism 425
Reproductive system of the human male 427
Reproductive system of the human female 428

Gamete production (gametogenesis) 430
Spermatogenesis 430
Oogenesis 432
Juxtaposing egg and sperm 433
Sexual responses in humans 435
Box B Birth control 436
Fertilization events 438
Protection of the embryo 439
Nurture of the young 441
Nurture in mammals 442
Childbirth 443

CHAPTER SEVENTEEN

IMMUNE SYSTEMS AND DISEASE 446

Nonspecific defense mechanisms against pathogens 447 If pathogens evade the first defenses 448 Another nonspecific defense mechanism: The complement system 449 A nonspecific defense mechanism against viruses 450 Nonspecific defense mechanisms of plants 451 Specific defenses against invaders 451 Cells of the immune system 452 The immune response 454 Immunological memory and immunization 455 Clonal selection and its consequences 455 Box A A lymphocyte produces one immunoglobulin specificity 456

Self, nonself, and tolerance 457 Development of plasma cells 459 Monoclonal antibodies 460 The immunoglobulins 460 How does the enormous diversity of antibodies arise? 463 How a B cell produces a particular heavy chain 463 The constant region and class switching 465 The classes of immunoglobulins 465 The cellular immune system 467 The major histocompatibility complex 468 Transplants 469 Transfusions and ABO blood groups 470 Rh incompatibility 471 Disorders of the immune system 472 Cancer 473

CHAPTER EIGHTEEN

PLANT DEVELOPMENT 478

Vascular plants 478
Roots 480
Stems 481
Leaves 482
Embryo formation in flowering plants 482
Seed germination 484
Gibberellins 485
Seed dormancy 487
Roles of seed dormancy 488
Phytochrome 489
Early seedling growth 491

Auxin 492
Auxin action 494
Auxin and cell walls 496
The growing regions of the plant 498
Differentiation and organ formation 499
Cytokinins 500
Bud dormancy and abscisic acid 500
Box A Discovery of the cytokinins 501
Senescence 501
Growth substances and senescence 503
Box B Keeping the latex flowing 503

CHAPTER NINETEEN

REPRODUCTION IN FUNGI AND PLANTS 506

Asexual and sexual reproduction in fungi and plants 506
Alternation of generations 508
Alternation of generations in algae and fungi 508
Dikaryon formation in the fungi 510
Multiple hosts in the fungal life cycle 512
Mosses and ferns 513
The seed plants 515
Gymnosperms 517

Angiosperms: Flower structure 518
Angiosperm gametophytes 520
Double fertilization 521
Pollination 521
Fruit 522
Growth substances in pollen tube elongation and fruit growth 523
Photoperiodic control of flowering 524
Importance of night length 525
A flowering hormone? 527
Vernalization and flowering 528

CHAPTER TWENTY

NUTRITION OF PLANTS AND FUNGI 533

Mineral nutrients 534
Soils 536
Soils and plant nutrition 537
Soil formation 538
Plants and soils 539
The need for nutritional adaptations 539
Habitats laden with heavy metals 540
Plants on serpentine soils 541
Nitrogen-fixing organisms 542
Nitrogen fixation 543

Symbiotic nitrogen fixation 544
Denitrification 546
Industrial applications of nitrogen fixation 546
Nitrification 546
Nitrate reduction 548
Sulfur metabolism 548
Heterotrophic seed plants 548
Nutrition of fungi 550

CHAPTER TWENTY ONE

TRANSPORT, SUPPORT, AND PROTECTION IN PLANTS 555

The plumbing of a vascular plant 557 Root anatomy 559 Box A Fungal partners of plants 560 Stem anatomy 561 Photo Essay Stem anatomy 562 Growth in diameter of stems and roots 563 Leaf anatomy 565 Box B Wood 566 Stomata: A compromise 566 A reversed stomatal cycle and crassulacean acid metabolism 568 Transport in the xylem 569 Transport in the phloem 570 Strengthening tissues in the shoot 570 Reaction wood 572 Quonset huts and marble palaces 573

Special adaptations of leaves to dry and wet environments 574 Other adaptations to a limited water supply 575 Where oxygen is scarce 575 Saline environments 577 Salt accumulation and salt glands 578 Adaptations common to halophytes and xerophytes 579 A versatile halophyte 579 Acclimation to available sunlight 579 Leaf orientation 580 Leaf arrangement 580 Epiphytes in a tropical rain forest 582 Allocation patterns 582 Grazing and plant productivity 584 A chaotic environment 584

CHAPTER TWENTY TWO

HOMEOSTASIS AND THERMOREGULATION 588

Negative feedback 588
The tools of homeostasis 590
The necessity of homeostasis 590
Animals and temperature 591 **Photo Essay** Thermoregulation 592
Aquatic ectotherms 593
Homeostatic mechanisms in terrestrial ectotherms 593
Heterotherms 595

Endotherms 595
Metabolic rate and environmental temperature 596
Thermal conductance 597
Fever and chills 598
Adaptive hypothermia 598
Varying the operating point 599
Circadian rhythms and the biological clock 600

CHAPTER TWENTY THREE
ANIMAL NUTRITION 603

Nutrient requirements 604
Sources of organic nutrients 605
Mineral nutrients 606
Box A Beriberi and the vitamin concept 608
Vitamins 608
Box B Scurvy and vitamin C 609
Other nutritional deficiency diseases in humans 610
Nutrient procurement 611
Food processing 613
Digestion in tubular guts 613
Principles of digestion 616
Box C Early experiments on digestion 618
Tissue layers of the vetebrate gut 619

Mammalian chewing and swallowing 620 The stomach 623 The small intestine 624 Enzymatic activity in the small intestine 624 Absorption in the small intestine 626 Hormones of the duodenum 626 The large intestine 627 Herbivores 627 "Sharp teeth and short guts": The carnivores 629 The regulation of blood sugar in vertebrates 629 The roles of insulin and glucagon 630 The liver and blood cholesterol, 631

CHAPTER TWENTY FOUR

GAS EXCHANGE AND TRANSPORT IN ANIMALS 633

Rate of oxygen consumption 634 Oxygen availability 634 Size 635 Gills 636 Lungs 636

Box A Countercurrent distribution systems 639

Regulation of breathing 640 Insect tracheae 641 Transport in animal bodies 642 Open and closed systems 643

The heart 644

The human circulatory system 646

The human heart 648
Controlling the cardiac rhythm 648
Blood movement and pressure 651
Regulation of blood pressure 651
The capillary system 652
Box B William Harvey and the study of

circulation 653 **Box C** Cardiovascular diseases 655

Box C Cardiovascular diseases 65 Blood 656 Blood pigments 657 Carbon dioxide transport 659

The lymphatic system 660

water retention 681

CHAPTER TWENTY FIVE

EXCRETION AND OSMOREGULATION 663

The excretion of nitrogenous wastes 664 Water, salts, and the environment 665 Isotonic organisms and osmoregulating fishes 667 Water balance in terrestrial organisms 669

Simple protonephridia 670 Malpighian tubules 671

Types of excretory systems 670

Chemical signaling systems in

Ultrafiltration in the crustaceans 672 Metanephridia 673 The vertebrate excretory system 674 The mammalian nephron 676 Urine formation 676 Final processing of tubular fluid 679 The renal cortex, the renal medulla, and

What the kidney can and cannot do 682

PART SIX INTEGRATION AND BEHAVIOR 685

CHAPTER TWENTY SIX ANIMAL HORMONES 687

animals 687 Glands and hormones 689 Evolution: Of hormones or of target cells? 690 Actions of hormones 691 Developmental hormones: A vertebrate example 691 Developmental hormones in moth larvae 693 Developmental hormones in a bloodsucking bug 694 Box A The paper factor 694 A hierarchy of regulation: Roles of the pituitary 695 A hierarchy of regulation: The hypothalamus 696 Human reproductive hormones 697 Hormones and the menstrual cycle 698 Hormones and embryonic sexual differentiation 700

Growth hormone 701 The adrenal medulla 701 The adrenal cortex 702 Some other glands and their hormones 703 Water-soluble hormones and second messengers 704 The targets of cAMP 705 Other second messengers 706 Calcium ions as third messengers 707 The action of lipid-soluble hormones 707 Controlling hormone levels 708 Local chemical mediators 709 Discovery of "natural opiates" 710 Endorphins and hormones-and a common precursor 711 Activities of endorphins 712 Evolution of regulatory systems 712

CHAPTER TWENTY SEVEN
NEURONS AND NERVOUS
SYSTEMS 715

Major divisions of the nervous system 716 Cells of the nervous system 717 Reflex arcs 719 The resting potential 720 Electrotonic potentials 722 **Box A** The Nernst equation 722

Action potentials 723
Mechanism of the action potential 724
The refractory period 726
Propagation of the action potential 727
Synaptic transmission 728
Neurotransmitters 730
The neuromuscular junction 731

Clearing the synapse of neurotransmitter 732

Events in the postsynaptic neuron 733

Summation 734

Nervous integration 734

The limbic The limbic The autonomic nervous system 735

Cephalization 737

Structures of vertebrate brains 737

Information filtering in sensory

The cerebra The hypoth The cerebel The limbic The limbic The limbic The reticular The autonomic nervous system 735

Sleeping ar Memory 74

Structures of vertebrate brains 737

CHAPTER TWENTY EIGHT SENSORY SYSTEMS 747

systems 747
Types of sensory receptors 748
Receptor cells 749
Chemoreception 749
Olfaction 750
Chemoreception in arthropods 751
Visual systems of protists and invertebrates 752
Information processing in an invertebrate eye 752
Vertebrate and cephalopod eyes 754
Photoreceptors of the vertebrate eye 757

The cerebrum 738
The hypothalamus 739
The cerebellum 741
The limbic system and the emotions 741
The reticular formation 742
Sleeping and dreaming 743
Memory 744

Box A The blind spot of the vertebrate
eye 757

Events in the photoreceptors 758

Color vision 758

Information processing in the vertebrate
retina 759

Visual information processing in the
vertebrate brain 760

Mechanoreception 762

Auditory systems 764

Proprioception 766

Other receptors 767

CHAPTER TWENTY NINE **EFFECTORS** 769

Ciliated cells 769
Microtubules in cilia and flagella 771
Amoeboid cells 771
Hydrostatic skeletons 773
Exoskeletons 774
The vertebrate skeleton 776
Types of bone 776
Other aspects of the vertebrate skeleton 778
Muscle 778
Box A The dynamics of bone 779
Muscle function 780

The sliding filament model 782
Controlling the actin-myosin interaction 784
Integrating the activities of muscle fibers 785
Fast and slow muscles 786
Cardiac and smooth muscle 787
Other effectors 787
Trichocysts and nematocysts 788
Chromatophores 789
Glands 789
Electric organs 790

CHAPTER THIRTY
BEHAVIOR 793

Costs and benefits 793
Sign stimuli 795
Behavioral genetics 796
Learning 799
Box A Genes and hygienic behavior in honey bees 799
Mechanisms of learning 801

Song learning 803 Finding and choosing food 805 Human food choices 808 Avoiding being eaten 809 Orientation 811 Navigation 813 The evolution of behavior 815

Interspecific communication 831

Choosing associates 833

Insects 835

CHAPTER THIRTY ONE **SOCIAL BEHAVIOR** 819

Costs and benefits of group living 819
Types of social acts 821
Individual adjustments to group
living 821
Roles of the sexes 822
Communication: maintenance of social
groups 824
Chemical communication 825
Visual and auditory communication 826
Tactile and electrical communication 827

Origins of communication signals 829

Evolution of communication signals 829

Box A Calculating the coefficient of relatedness 835 Vertebrates 836 Ecology and social organization 837 Defense of space 840 Social behavior and natural history 840

The evolution of animal societies 834

Box B Economics of territory defense in the golden-winged sunbird 841

CHAPTER THIRTY TWO
ORIGINS 847

Spontaneous generation: Old ideas 847
Spontaneous generation revisited 849
The early earth 849
Laboratory simulation of the atmosphere of early earth 851
Energy sources for life's evolution 852
The evolution of catalytic activity 853
The origins of genotypes and phenotypes 855
The refinement of metabolism 855

Coacervates 856
The fossil record 856
Ancient prokaryotes 859
Comparative metabolism 860
Evolution of photosynthesis 862
Eukaryotic and multicellular organisms 863
Ecology in a world without oxygen 864
Box A A concise scenario for the origin and early evolution of life 864

CHAPTER THIRTY THREE TAXONOMY AND PHYLOGENY 867 The goals of biological classification 868
The history of taxonomy 869
Stages of taxonomy 870
Phenetic, cladistic, and evolutionary systematics 870
Weighting of taxonomic traits 872

Taxonomic characters 873
Selection of taxonomic characters 875
Homology and analogy 875
Taxonomic hierarchies 876
Taxonomic keys 878
Evolutionary trees 879

CHAPTER THIRTY FOUR
VIRUSES AND MONERA 883

Discovery of the viruses 883 Virus structure 884 Reproduction of viruses 884 Classification of viruses 887 Viroids: RNA without a capsid 887 Scrapie-associated fibrils: Infectious proteins? 889 Bacteria and disease 889 The kingdom Monera (prokaryotes) 890 Prokaryotes versus eukaryotes 892 Metabolic diversity in the kingdom Monera 893 Structural characteristics of bacteria 896 The Archaebacteria 897 Kingdom Monera, division Archaebacteria: Sulfur-dependent thermophilic bacteria 897 Kingdom Monera, division Archaebacteria: Methanogenic bacteria and their relatives 897

Kingdom Monera, division Eubacteria: Gliding bacteria 898 Kingdom Monera, division Eubacteria: Spirochetes 898 Kingdom Monera, division Eubacteria: Curved and spiral bacteria 899 Kingdom Monera, division Eubacteria: Gram-negative rods 900 Kingdom Monera, division Eubacteria: Gram-positive rods 902 Kingdom Monera, division Eubacteria: Actinomycetes 902 Kingdom Monera, division Eubacteria: Rickettsias and mycoplasmas 904 Kingdom Monera, division Eubacteria: Gram-negative and gram-positive cocci 905 Kingdom Monera, division Cyanobacteria 906

CHAPTER THIRTY FIVE PROTISTA 910

Contractile vacuoles 910
Endosymbiosis among the protists 912
Protista and other kingdoms of
eukaryotes 912
Phylum Mastigophora 913
Phylum Sarcodina 915
Phylum Sporozoa 917
Phylum Ciliophora 918
Cytoplasmic organization in the
ciliates 921

Phylum Gymnomycota 922
Phylum Gymnomycota, class
Myxomycetes 922
Phylum Gymnomycota, class
Acrasiomycetes 923
Phylum Protomycota 924
Phylum Oomycota 925
Phylum Pyrrophyta 925
Phylum Chrysophyta 926