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PREFACE

Today the finite element method is a powerful tool for the approximate
solution of differential equations governing diverse physical phenomena. Its
use in industry and research is extensive, and indeed it could be said that
without it (and its handmaiden the computer) many problems would be

incapable of solution. Despite this extensive use, comprehension of the princi-

ples involved is often lacking in the user who has been trained in a standard
undergraduate course (and indeed in many postgraduate courses). It is the
object of this book to address such an audience and to form the background
text for an undergraduate or early postgraduate course on the subject. For
some years now at the authors’ institution a large part of this book has formed
the basis of a course given to students of civil engineering, and we find that the
principles are readily absorbed. When writing the text the authors kept in mind
a wider audience of engineers and physicists, and the coverage is therefore
suitable for a broad range of students.

It is now about 25 years since the phrase “finite element method” was
coined. At the time its inspiration was the field of structuial analysis, and
analogies with such a discrete process were used for the solution of continuum
problems. As the uiiderstanding of the basic process grew, its roots in other
mathematical approximation methods (such as those due to Rayleigh, Ritz,
and Galerkin) became obvious, and the generality opened up made the field an
attractive one for mathematicians. Unfortunately, much of their work is
couched in a language that others find difficult to follow. Therefore, in this
book we attempt a presentation which, though reasonably rigorous, should be
readily understood by those with a basic knowledge of calculus.

Many alternative numerical approximation processes existed before the
advent of the finite element method. Here boundary solution techniques and
finite difference methods have established their own useful existence—and
proponents of these have at times crossed swords with those advocating finite
element methods in claiming particular superiority. Today some of us see the
essential unity of all approximation processes used in the solution of problems
defined by differential equations, and in this book we stress this throughout.
We endeavor to show that a “generalized finite element method” can be
defined embracing all the alternative variants, thus leaving scope for choosing

s
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viii  PREFACE

the “optimal approximation” to the user. For this reason the book begins with
a chapter on finite difference methods—probably the most obvious (and
oldest) of the approximation procedures.

We have endeavored to provide a sufficient number of illustrative examples
as well as exercises to make this a suitable teaching text (or a self-study book).
Any suggestions from the reader on detailed improvement of these will be
welcome. .

Finally, we should like to thank Dr. Don Kelly for contributing the major
part of Chapter 8 on error estimates and the secretaries of the Civil Engineer-
ing Department at Swansea who typed the manuscript.

0. C. ZIENKIEWICZ
K. MORGAN

Swansea, Wales, United Kingdom
September 1982
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CHAPTER ONE

Continuum Boundary
Value Problems and
the Need for Numerical
Discretization.

Finite Difference
Methods

1.1. INTRODUCTION

While searching for a quantitative description of physical phenomena, the
engineer or the physicist establishes generally a system of ordinary or partial
differential equations valid in a certain region (or domain) and imposes on this
system suitable boundary and initial conditions. At this stage the mathematical
model is complete, and for practical applications “merely” a solution for a
particular set of numerical data is needed. Here, however, come the major
difficulties, as-only the very simplest forms of equations, within geometrically
trivial boundaries, are capable of being solved exactly with available mathe-
thatical methods. Ordinary differential equations with constant coefficients are
one of the few examples for which standard solution procedures are avail-
able—and even here, with a large number of dependent variables, considerable
difficulties are encountered.

To overcome such difficulties and to enlist the aid of the most powerful tool
developed in this century—the digital computer—it is necessary to recast the

Do0bouil 1



2 CONTINUUM BOUNDARY VALUE PROBLEMS

problem in a purely algebraic form, involving only the basic arithmetic

.operations. To achieve this, various forms of discretization of the continuum
problem defined by the differential equations can be used. In such a discretiza-
tion the infinite set of numbers representing the unknown function or func-
tions is replaced by a finite number of unknown parameters, and this process,
in general, requires some form of approximation.

Of the various forms of discretization which are possible, one of the simplest
is the finite difference process. In this chapter we describe some of the essentials
of this process to set the stage, but the remainder of this book is concerned
with various trial function approximations falling under the general classifica-
tion of finite element methods. The reader will find later that even the finite
difference process can be included as a subclass of this more general category.

Before proceeding further we shall focus our attention on some particular
problems which will serve as a basis for later examples. It is clearly impossible
to deal in detail in a book of this length with a wide range of physical
problems, each requiring an introduction to its background. It is our hope,
however, that the few examples chosen will serve to introduce the general
principles of approximation, which the readers can then apply to their own
particular special cases.

1.2. SOME EXAMPLES OF CONTINUUM PROBLEMS

Consider the example of Fig. 1.1a in which a problem of heat flow in a
two-dimensional domain § is presented. If the heat flowing in the direction of
the x and y axes per unit length and in unit time is denoted by g, and g,
respectively, the difference D between outflow and inflow for an element of
size dx dy is given as

99y . _ 9q
D=d}'(qx+_a?dx_qx) +.dx(qy+'a_;:dy_qy) (ll)

For conservation of heat, this quantity must be equal to the sum of the heat
generated in the element in unit time, say, Q dx dy, where Q may vary with
position and time, and the heat released in unit time due to the temperature
change, namely, —pc(d¢/dt) dx dy, where c is the specific heat, p is the
density and ¢(x, y, t) is the temperature distribution. Clearly, this requirement
of equality leads to the differential relationship '

dq, dq, ¢

X+—a}-—Q+pc—=0 (12)

which has to be satisfied throughout the problem domain 2.
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/.n-prob(em domain

b,o%!dy)dx

o-dy

q,dy {0,032 dx)dy

(a)

£1-problem domain
V% pro

Ty_/:’* _______ J_ék\f;(q..-ﬁ)

x= Lx

FIGURE 1.1. Examples of continuum problems. (a) Two-dimensional heat conduction.
(b) One-dimensional heat conduction.

Introducing now a physical law governing the heat flow in an isotropic
medium,’ we can write, for the flow component in any direction n,
g, = -~ k%% (1.3)
where k is a property of the medium known as the conductivity. Specifically, in
the x and y directions we can then write for an isotropic material

99

4, k=
1.4
. (14)

Relationships (1.2) and (1.4) define a system of differential equations govern-
ing the problem at hand, and which now requires solution for the three
dependent variables q,, g,, and ¢.
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4 CONTINUUM BOUNDARY VALUE PROBLEMS

Such a solution needs the specification of initial conditions at time, say,
t = t, (e.g., the distribution of temperature may be given everywhere in £ at
this time) and of boundary conditions on the surface or boundary I' of the
problem. Typically two different kinds of boundary condition may be in-
volved.

In the first condition, say applicable on a portion I, of the boundary, the
values of the temperature are specified as ¢(x, y, ¢), so we have

$-9¢=0 onT,. (1.5)

A boundary condition of this form is frequently referred to as being a Dirichlet
boundary condition.
In the second condition, applicable on the remainder T, of the boundary,
" the values of the heat outflow in the direction » normal to the boundary are
prescribed as g(x, y, t). Then we can write

4,~§=0 onT, (1.6a)
or, alternatively,
o : .
—kan -§=0 onT, (1.6b)

This type of boundary condition is often called a Neumann boundary condi-
tion.

The problem now is completely defined by Eq. (1.2), (1.4), (1.5), and (1.6),
and numbers representing the distribution of ¢, ¢, and q, at all times can, in
principle, be obtained by the solution of this set of equations.

This problem may be expressed in an alternative form by using Eq. (1.4) to
eliminate the quantities g, and g, from Eq. (1.2), and now a higher order
differential equation in a single independent variable results. Performing this
elimination produces the equation

ax(kgt) *%

which once again requires the specification of initial and boundary conditions.
In the above we have been concerned with a problem defined in time and
space domains, with the former requiring the specification of initial conditions.
The independent variables here were x, y, and ¢. If steady-state conditions are
assumed (i.e., the problem is invariant with time and so d/dt = 0), the
governing equation (1.2) or (1.7) simplifies. In the latter case we have

3x(ki99) 5‘9)—)( Zz)-}-Q 0 (1.8)

dp 99
(kay)+Q Py = 0 (1.7)
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which for solution requires only the imposition of boundary conditions of the
form (1.5) and (1.6). Such boundary value problems will be the subject of
discussion of the major part of this book, but in Chapter 7 we shall return to_
time-depencent equations and consider possible methods for their solution.
While we have written here the governing equations for a two-dimensional

situation, this could have easily been extended to three dimensions to deal with

more general problems. On the other hand, in some problems only a one-di-
" mensional variaticn occurs; in Fig. 1.1b, for instance, we consider the heat flow
through a slab in which conditions do not vary with y. Then, from Eq. (1.8), we
have for steady state an ordinary differential equation

dx( 2)+Q 0 (1.9)

-and the problem “domain” is now simply the range 0 < x < L,.

Such an ordinary differential equation can be solved analytically, but we
shall use it and similar equations extensively to illustrate the application of
discretization procedures. This will enable us to demonstrate the accuracy of
approximate methods by comparing their results with the exact solutions.

The problem of heat flow just described is typical of many other physical
situations and indeed can be identified with problems such as the following.

1. Irrotational ideal fluid flow. If we put k=1, Q = 0 then Eq. (1.8)
reduces to a simple Laplacian form;

R 2
—+——==vV%=0 1.10
ax?  ay? ¢ - (119

which is the equation governing the distribution of the potential in
irrotational ideal fluid flow.

2. Flow of fluid through porous media. Here we take Q = 0 and identify
k as the medium permeability. The hydraulic head ¢ then satisfies Eq.
(1.8).

3. Small deformation of membranes under a lateral load. With k = 1

_ and Q defined to be the ratio of the lateral load intensity to the in-plane

tension of the membrane, Eq. (1.8) is the equation governing the
transverse membrane deflection ¢.

Other applications will occur to the reader familiar with different phy.ical and
engineering problems, and from time to time we shall introduce in this book
different applications of the above differential equation and indeed other
systems of differential equations.

Although at such times the full exploration of the origin and derivation of
such equations may not always be apparent o all readers, we hope that the
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procedures of mathematical discretization adopted to produce a solution will
be clear in each case.

1.3. FINITE DIFFERENCES IN ONE DIMENSION

Suppose we are faced with a simple one-dimensional boundary value problem,
that is, we wish to determine a function ¢(x) which satisfies a given differen-
tial equation in the region 0 € x < L., together with appropriate boundary
conditions at x-= 0 and x = L. As we have just seen, a typical example of this
type of problem would be that of calculating the temperature distribution ¢(x)
through a slab of thickness L,, of thermal conductivity k, with the faces x = 0
and x = L, maintained at given temperatures ¢, and ¢L, respectively, and
with heat generation at a rate Q(x) per unit length in the slab. The governing
differential equation for this problem is given by Eq. (1.9), which reduces to
the equation
d2

kw— -Q(x) | (1.11)
if we make the assumption that the material thermal conductivity is constant.
The associated boundary conditions are of the type given in Eq. (1.5) and can
be written as

9(0) =&, o(L,) =9, (1.12)

To solve this problem by the finite difference method we begin by differenc-
ing the independent variable x, that is, we construct a set (or grid or mesh) of
L + 1 discrete, equally spaced grid points x; (! = 0,1,2,..., L) on the range
0<x<L, (seeFig.lZ)withxo=0xL-= ;and x;, , — x, = Ax.

The next step is to replace those terms m the differential equation that
involve differentiation by terms involving algebraic operations only. This
process, of necessity, involves an approximation and can be accomplished by
making use of the finite difference approximations to function derivatives. The
manner in which such approximations can be made are now discussed.

1.3.1.  The Finite Difference Approximation of Derivatives

Using Taylor’s theorem with remainder we can write, exactly,

d¢

Ax? d*
¢(x,+,) = ‘P(xl + Ax) = ¢(x,) + Ax-;‘; + Ax"d¢

X=X, 2 dx?

x=x+0,Ax
(1.13)

where 0, is some number in the range 0 < 8, € 1. Using the subscript / to
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Typical mesh point

IAx (A xkle IAx ' Ax , Ax

——————— e N

x=0 X, % % %o ¥ia Xl

" FIGURE 1.2. Construction of a finite difference mesh over the interval 0 < x < L,.

denote an evaluation at x = x,, this can be written

_ Ax do Ax? d%
¢l+l - ¢l+ 2 dx ,+ 2 dx2 146, (1l4)
and therefore
d¢ $1— ¢ Ax d%
= = 1.15
dx ‘1 Ax 2 dx?|i4e, (1.15)

This leads to the so-called forward difference approximation of the first
derivative of a function in which

| b1 -
| et =9 (1.16)
The error E in this approximation can be seen to be given by
Ax d%
E= - —— 1.17
2 dX2 1+6, ( ) :

and as E is equal to a constant multiplied by Ax, we say that this error is
O(Ax). This is known as the order of the error.

The exact magnitude of the error cannot be obtained from this expression,
as the actual value of 6, is not given by Taylor’s theorem, but it follows that

A
E] < Tx max
(x5 %0411

Lk ]

o (1.18)

Figure 1.3 shows a graphical interpretation of the approximation that we have
derived mathematically. The first derivative of ¢(x) at x = x, is the slope of
the tangent to the curve y = ¢(x) at this point, that is, the slope of the line AB.
The forward difference approximation is the slope of the line AC, and it can be
seen that the slope of this line approaches that of the line AB as the mesh
spacing Ax gets smaller.
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y=0(x)

L%

B

X

t-1 X

FIGURE 1.3. A graphical interpretation of some finite difference approximations to d¢/dx|;.

Forward difference—slope of AC; backward difference—slope of DA; central difference—slope
of DC.

10

In a similar manner we can use Taylor’s theorem to obtain

Ax? d2¢ »
I+de2 (119)

d
b1 =¢ Ax-d—f

where 0 < 8, < 1. Rewriting this expression in the form

do| ¢ — ¢ Bxd%
a T Bx T2 ax?|, (1.20)
we can produce the backward difference approximation
do| _ 9= b
I = Ax (1.21)
The error E in this approximation is again O(Ax), and now
Ax d%
E|l€<— m — 1.22
| I 2 [X,_ " xl] dx 2 ( )

The graphical representation of the backward difference approximation can be
seen in Figure 1.3; the slope of the line AB is now approxlmated by the slope
of the line AD.

In both the forward and the backward difference approximations the error
is of the same order, that is, O(Ax). However, if we replace the expansions of



