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PREFACE

There ié only one way to learn something .... by doing
it. This means that the road to knowledge in theoretical
organic chemistry 'is built from quantum chemical computations
on organic molecules. It is hoped that after an experimental
organic chemist has finished this book he will be réady to
begin. Even if he feels he is not ready, he should start and
after some computational experience has been gained the con~-
tent of this introductory book will mean considerably more.
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SECTION A

INTRODUCTION

CHMAPTER 1

INTRODUCTORY REMARKS

1. The Role of Theories and Models

AN

-
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1, The Role of Theories and Molecules

The followina scheme encompasses in a very general
way all scientific activity

MODEL
Conceptual
( Explanotion
Theor etical Experimental

Observation “\____W Observation

THEORETICAL EXPERIMENTAL
TECHNIQUE TECHNIQUE

Figure I-1. A schematic illustration of the
interrelationship of experiment, theory and modelling.

It should be noted that THEORY and EXPRRIMENT are
equally fundamental in any branch of science that has reached
a rigorous stage. MODELS on the other hand are built either on
theoretical and/or experimental observations and are'ekpected
to provide a conceptual explanation for the phenomenon
investigated. »

When its chemical implications are sought we can
identify the "THEORETICAL TECHNIQUE" with "Quantum Theory"
including all its various branches. The "MODEL" may be iden-
tified with all the "Rules" we have in chemistry such as the
"Selection Rules", the "Woodward-Hoffmann Rules" and the like.
The application of any THEORETICAL TECHNIQUE to a particular
chemical problem is carried out through computation which in
turn produces the Theoretical (i.e. numerical) Observations in
very much the-same way as the application of an EXPERIMENTAL
TECHNIQUE leads to qualitative (i.é. non-numeric) or gquanti-
tative (i.e. numerical) results. The application of a MODEL



to the same chemical problem produces qualitative (i.e. non-
ntmerical) results which may be regarded as concepts or con-
ceptual explanations and possessing them we usually declare
that. we have some understanding‘of the problem.

' There are at least three things to be noticed. One
is that the results obtained from theory are always quanti-
tative from models always gualitative, while experimental
results may be either qualitative or quantitative. The second
thing to notice is that in both theory and models we are
dealing with intellectual constructs while in any chemical
experiment one is working with actual chemical substances.

The third point is that there exists a whole spectrum of
intellectual constructs between theory and models and it need
not be trivially obvious into which category a construct fits.
At this stage it is necessary to point out that the
above viewpoint, in which all of our scientific activities are
unified on an equal basis, by no means enjoys uniform accept-
ance in the chemical community. In fact, we may classify most
of the confessed opinions into the following four categories.

1. Only MODELS and therefore Conceptual Explanations
are of any importance andvtherefore of any real
relevance to chemistry because THEORY is largely
incomprehensible and consequently irrelevant.

2. THEORY is important in so far as it supports a
useful MODEL.

3, THEORY is of primary importance and a MODEL is
acceptable only in so far as it is in close agree-
ment with the Theoretical Observations.

4. THEORY is the only scientifically acceptable and
therefore relevant method that complements
EXPERIMENT. Consequently all MODELS are more or
less useless and thus irrelevant. ‘

Perhaps most experimentalists' point of view could be
fitted in the first three categories while most theoreticians'’
views could be accommodated by the last three. To the average
chemist, however, the relatively moderate views of (2) and (3)
are most appealing and the first and last statements appear
extreme; the first one being at the ultra conservative extreme
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while the last is at the radical extreme. 2t this stage it may
be appropriate to make an operational distinction between
theory and a model. Such a distinction may be made in terms of
their applicability. If we apply a Theory to investigate a
question that asks WHAT we may compute an answer within any
quantitative theory. For example: WHAT is the most stable
geometry of NH3? We may obtain r(N-H) = 1.01 2 and <HNE = 107°.
Alternatively we may ask: WHAT is the barrier to pyramidal
inversion in NH3? We may compute € Kcal/mole. However no
theory can answer a guestion: WHY is ammonia pyramidal or WHY
is its barrier to pyrémidal inversion 6 Kcal/mole? As soon as
we try to obtain an answer to this type of question, wittingly
or unwittingly we are using a model (cf. Figure I-2.).

WHAT ? — Theory —>= An Answer

WHY ? ——JE—-» An Answer

Figure I-2. The differing utility of a theory and a model.

The fundamental problem is that with the question WHY we
would like to know what is causing what. For example we may
say that NH, is pyramidal because such a geometry is gquaranteed
by its electron distribution. _Immediately then we may ask VHY
is the electron density so distributed. Then one hight suggest
that the position of the nuclei is causina such an electron
distribution. Even at this stage we may ask WHY is the balance
between nuclear and electronic forces such thap‘the.pyramidal
geometry is favoured. In other words a question WHY leads to
an infinite number of questions until one arrives at the ulti-
mate or "primary cause". In contrast to this situation once an’
answer is given to a questidn WHAT no further questidn of WHAT
may follow. Consequently people in category No. 4 are of the
opinion that WHAT consti:uﬁes a scientific question while WHY

constitutes a philosophical or theological question.,



After summarising the rationale behind the extreme
viewpoint (4), it is enough to say that quite likely you, the
reader, may identify your point of view with one of the four
(1-4) statements above. Irrespective of your point of view you
probably wish to find out more about the THEORETICAL TECHNIQUES
used for the generation of Theoretical Observations which is
the subject of the subsequent chapters.
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It is advantageous to treat orbitals as vectors and to
deal with the mathematical problem of generating molecular
orbitals (MO) from atomic orbitals (A0) as a transformation
from one set of vectors to another. 1In this sense molecular
orbital theory may be viewed as an exercise in Linear Algebra
and this presentation of molecular orbital theory therefore
begins with a review of vectors, vector spaces and their
associated manipulations.

1. Vectors and Vector Spaces

A vector space is a set of mathematical objects ¢, x,
N... called vectors. Although we may think of a vector ¢ as a
geometrical object characterized by a length and a direction,
however, it is best to abandon this fixed idea because we shall
consider other than geometrical objects; such as mathematical
functions to be vectors.

Figure II.1 The vector as geometrical object
[ and as mathematical function.

Consequently, if we wish to consider abstract vector
spaces, which is the most convenient way to discuss quantum
chemistry then it is hest to consider vectors as abstract
mathematical objects. Fowever, from time to time geometric
illustrations will be civen to facilitate understanding.

For any pair ¢f vectors that belona to the vector
spacé there is a unigue sum The addition of vectors is hoth

commutative and associlative

b+ x = x + o (commutative) {11~1}



6+ (x+mn) = (p+x) +n (associative) {11-2}

There is one unique vector in every vector space called
origin and zero vector: O and for every vector ¢ there exists
an inverse vector - ¢. These special vectors are subject to
the following addition laws

N

¢ +0=¢ {11-3}
¢ + (-¢) =0 {11-4}

For each scalar a and each vector ¢ there exists a multiple
vector which is the product of a and ¢. The multiplication of
scalars is both distributive and associative

a(¢ + x) = ad + ay ) ) {11-5}
(a + b)¢ = aé + bé (distributive) {116}
{ab) ¢ = a(b¢) {agssociative) {11-7}

The minimum number of vectors required to define the
vector space is termed the dimension of the vector space. It
is easy to provide geometrical illustrations of one, two and
~ three dimensional vector spaces.

x X '
¢ ¢ o

Figure 1I.2 Geometrical illustration of 1, 2
and 3 dimensional vector spaces.

To define a vector space it is necessary to have a set
of linearly independent vectors. If the equation ’

k1 ny o+ k2 Ny + eeennet kn n, = 0 : {11-8}



is valid only for all k, = 0 the set of vectors {n;} is
linearly independent (if any ki # 0 the vectors are linearly

dependent) .
A linearly independent set of vectors which spans a

vector space represents the basis of the vector space. Any

other vector in this vector space is linearly dependent on the
basis set (i.e. not all ki = 0) and may therefore he expressed
as a linear combination of the basis vectors

. n
¢ = Cyny + Cony + ... + Conp = k) Cyny {11~9}
where the set of numbers Cpr Cy e Cp are the components of

the vector over the basis set {n}.
A geometrical illustration of this principle for a two
dimensional vector space is given in the followinc figure.

¢= (cosd)n, +(sind) n,

Figure TII.3 The concept of linear dependence in
a two dimensional vector space.

Since it is impossible for both components {sin o and cos a) to
be zero at any value of a, ¢ is linearly dependent on the set
of {n} which is the basis set of the vector space.

The basis vectors may be arranged in a row (row vector)

and abbreviated as <n|

<n| = (ng, M, e..o somp) {11-10}
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or in a column (column vector) and denoted as |n>

\ -

n> =] . {11-11}

n

The transpose (denoted by a prime) of a column vector is a row
vector:

In>' = o= gy ... n) = <n]
N2
. {11-12}
.
n

and vice versa. :

If the basis vectors are not real but complex (such as
complex functions) the corresponding relationship holds for the
adjoint (denoted by a dagger) which is the Eranspose complex
conjugaté (the compl=ax conjugate is denoted by an asterisk)

+ +

fy>" = [ ¢ SIS LR PLEPPP S <¥|

{111-13}

n

With this notation at hand it i- possible to develop a vVvector

notation for the linear combination of the basis vectors as
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defined in eéuation {11-9}

) =.cln1 + Cony, + SRR +Cy = (C1Cy «e... c,) n; \ {1I-14}
. nz .
. "n
or in its equivalent form
$ = mCy Mty + oLl 4 nncI.1 = (nyny ... ) C;\ {11-15}
Ch

It probably should be pointed out at this stage that
this is exactly the method (as indicated in equations {I1I-9},
{11-11} and {II-15} used to generate molecular orbitals from
atomic orbitals where the basis set {n} stands for the set of
RO used and ¢ represents one particular molecular orbital. The
expansion coefficients (i.e. the coefficients of the linear
combination) are labelled as Clcz ees Cn and these are in fact
the components of the particular MO: ¢ over the chosen AO
basis {n}.

2. Inner Product and Orthogonality

Molecular orbital theory involves special types of
vector spaces where the basis set (the atomic orbitals) con-
sists of scalar-valued continuous functions of space (i.e. x,
vy, 2) defined in an interval {a,bl for each one of the indep-
endent variables (x, y, z). This example may be referred to as
a vector‘space of continuous functions on {a,b}. It mav be '

noted that using a Cartesian coordinate system the interval is
{-», 4=} for all three independent variables.
For such a vector space the inner product of any two

basis vectors is defined as the following definite integral
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S, =

13 ni(x,y,z)nj(x,y,z) dx dy dz {T1-16}

8

+
8
+
8
;Jg_+

8

If the set of orbitals {n} used are complex valued functions
the above definition should he generalized as follows

400 4o oo
sij = J' J'-f ni*(x,y,z)nj(x,y,z) dx dy dz {11-17}

w00  —00 —O

This integral (which is frequently called the overlap integral)

is abbreviated in the following fashion in Dirac's notation,

Si5 2

<ni|nj> {11-18}
where the <ni| includes the complex conjugate as specified in
equation {II-17}. '

When Sij is zero then the two vectors ni‘and nj are
said to be orthogonal. Although orthogonality is a more
general concept than perpendicularity, however it may be help-
ful to review a deometrical example.

As indicated by the geometrical relationship shown in

Figure II-4 the inner product:

.1x].cos® {11-19}

s = <lx> = o

will vanish when the two vectors are perpendicular to each
other (i.e. when the angle 0 is 90° or 270°). )

In guantum chemistry orthogonalization of the basis
i.e. the basis vectors (e.g. the AO) facilitates the calcul-
ation and is therefore of some importance. The most freguently
used methods are the symmetric (L8wdin) orthogonalization and
the Schmidt orthogonalization. The geometrical illustration of
these two methods of orthogonalization is ‘shown in Figure
II-5. ° ’ X

In actual calculations one_usually works with more than
two basis vectors (i.e. AO) and the whole set needs to be
orthogonalized so that any pair of véctors in the set will be



