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The Rapid Prototyping of Application-Specific Signal Processors (RASSP) 1, 2, 3] program
of the U.S. Department of Defense (ARPA and Tri-Services) targets a 4X improvement in
the design, prototyping, manufacturing, and support processes (relative to current practice).
Based on a current practice study (1993) [4], the prototyping time from system requirements
definition to production and deployment, of multiboard signal processors, is between 37 and
73 months. Qut of this time, 25 to 49 months are devoted to detailed hardware/software
(HW/SW) design and integration (with 10 to 24 months devoted to the latter task of integra-
tion). With the utilization of a promising top-down hardware-less codesign methodology
based on VHDL models of HW/SW components at multiple abstractions, reduction in de-
sign time has been shown especially in the area of hardware/software integration [5]. The
authors describe a top-down design approach in VHDL starting with the capture of system
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requirements in an executable form and through successive stages of design refinement, end-
ing with a detailed hardware design. This hardware/software codesign process is based on
the RASSP program design methodology called virtual prototyping, wherein VHDL models
are used throughout the design process to capture the necessary information to describe the
design as it develops through successive refinement and review. Examples are presented to
illustrate the information captured at each stage in the process. Links between stages are
described to clarify the flow of information from requirements to hardware.

ZS.lr_IintAroductiornﬁ

We describe a RASSP-based design methodology for application specific signal processing systems which
supports reengineering and upgrading of legacy systems using a virtual prototyping design process. The
VHSIC Hardware Description Language (VHDL) [6] is used throughout the process for the following
reasons. One, it is an IEEE standard with continual updates and improvements; two, it has the ability
to describe systems and circuits at multiple abstraction levels; three, it is suitable for synthesis as well as
simulation; and four, it is capable of documenting systems in an executable form throughout the design
process.

A Virtual Prototype (VP) is defined as an executable requirement or specification of an embedded system
and its stimuli describing it in operation at multiple levels of abstraction. Virtual prototyping is defined
as the top-down design process of creating a virtual prototype for hardware and software cospecification,
codesign, cosimulation, and coverification of the embedded system. The proposed top-down design
process stages and corresponding VHDL model abstractions are shown in Fig. 78.1. Each stage in the
process serves as a starting point for subsequent stages. The testbench developed for requirements capture
is used for design verification throughout the process. More refined subsystem, board, and component
level testbenches are also developed in-cycle for verification of these elements of the system.

The process begins with requirements definition which includes a description of the general algorithms to
be implemented by the system. An algorithmis here defined as a syster’s signal processing transformations
required to meet the requirements of the high level paper specification. The model abstraction created at
this stage, the executable requirement, is developed asa jointeffort between contractor and customerin order
to derive a top-level design guideline which captures the customer intent. The executable requirement
removes the ambiguity associated with the written specification. It also provides information on the
types of signal transformations, data formats, operational modes, interface timing data and control,
and implementation constraints. A description of the executable requirement for an MPEG decoder is
presented later. Section 78.4 addresses this subject in more detail.

Following the executable requirement, a top-level executable specification is developed. This is some-
times referred to as functional level VHDL design. This executable specification contains three general
categories of information: (1) the system timing and performance, (2) the refined internal function, and
(3) the physical constraints such as size, weight, and power. System timing and performance information
include I70 timing constraints, I/O protocols, and system computational latency. Refined internal function
information includes algorithm analysis in fixed/floating point, control strategies, functional breakdown,
and task execution order. A functional breakdown is developed in terms of primitive signal processing
elements which map to processing hardware cells or processor specific software libraries later in the design
process. A description of the executable specification of the MPEG decoder is presented later. Section 78.5
investigates this subject in more detail.

The objective of data and control flow modeling is to refine the functional descriptions in the executable
specification and capture concurrency information and data dependencies inherent in the algorithm. The
intent of the refinement process is to generate multiple implementation independent representations of the
algorithm. The implementations capture potential parallelism in the algorithm at a primitive level. The
primitives are defined as the set of functions contained in a design library consisting of signal processing
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FIGURE 78.1 The VHDL top-down design process.

functions such as Fourier transforms or digital filters at course levels and of adders and multipliers at
more fine-grained levels. The control flow can be represented in a number of ways ranging from finite
state machines for low level hardware to run-time system controllers with multiple application data flow
graphs. Section 78.6 investigates this abstraction model.

After defining the functional blocks, data flow between the blocks, and control flow schedules, hardware-
software design trade-offs are explored. This requires architectural design and verification. In support of
architecture verification, performance level modeling is used. The performance level model captures the
time aspects of proposed design architectures such as system throughput, latency, and utilization. The
proposed architectures are compared using cost function analysis with system performance and physical
design parameter metrics as input. The output of this stage is one or few optimal or nearly optimal
system architectural choice(s). In this stage, the interaction between hardware and software is modeled
and analyzed. In general, models at this abstraction level are not concerned with the actual data in the
system but rather the flow of data through the system. An abstract VHDL data type known as a token
captures this flow of data. Examples of performance level models are shown later. Sections 78.7 and 78.8
address architecture selection and architecture verification, respectively.

Following architecture verification using performance level modeling, the structure of the system in
terms of processing elements, communications protocols, and input/output requirements is established.
Various elements of the defined architecture are refined to create hardware virtual prototypes. Hardware
virtual prototypes are defined as software simulatable models of hardware components, boards, or sys-
tems containing sufficient accuracy to guarantee their successful realization in actual hardware. At this
abstraction level, fully functional models (FFMs) are utilized. FFMs capture both internal and external
(interface) functionality completely. Interface models capturing only the external pin behavior are also
used for hardware virtual prototyping. Section 78.9 describes this modeling paradigm.

Application specific component designs are typically done in-cycle and use register transfer level (RTL)
model descriptions as input to synthesis tools. The tool then creates gate level descriptions and final layout

-
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information. The RTL description is the lowest level contained in the virtual prototyping process and will
not be discussed in this paper because existing RTL methodologies are prevalent in the industry.

At least six different hardware/software codesign methodologies have been proposed for rapid proto-
typing in the past few years. Some of these describe the various process steps without providing specifics
for implementation. Others focus more on implementation issues without explicitly considering method-
ology and process flow. In the next section, we illustrate the features and limitations of these approaches
and show how they compare to the proposed approach.

Following the survey, Section 78.3 lays the groundwork necessary to define the elements of the design
process. At the end of the paper, Section 78.10 describes the usefulness of this approach for life cycle
support and maintenance.

78.2 Survey of Previous Research

The codesign problem has been addressed in recent studies by Thomas et al. [7], Kumar et al. [8], Gupta
et al. [9], Kalavade et al. [10, 11], and Ismail et al. [12]. A detailed taxonomy of HW/SW codesign was
presented by Gajski et al. [13]. In the taxonomy, the authors describe the desired features of a codesign
methodology and show how existing tools and methods try to implement them. However, the authors
do not propose a method for implementing their process steps. The features and limitations of the latter
approaches are illustrated in Fig. 78.2 [14]. In the table, we show how these approaches compare to the
approach presented in this chapter with respect to some desired attributes of a codesign methodology.
Previous approaches lack automated architecture selection tools, economic cost models, and the integrated
development of test benches throughout the design cycle. Very few approaches allow for true HW/SW
cosimulation where application code executes on a simulated version of the target hardware platform.

DSP Codesign Features

Executable Functional Specification

Executable Timing Specification

; cotar
Automated Partitioning

Model-Based Performance Estimation
onomic Cost/Profit Estimation Models |
HW/SW Cosimulation

Uses IEEE Standard Languages

.

Integrated Test Bench Generation.

FIGURE 78.2  Features and limitations of existing codesign methodologies.

78.3 Infrastructure Criteria for the Design Flow

Fourenabling factors must be addressed in the development of a VHDL model infrastructure to support the
design flow mentioned in the introduction. These include model verification/validation, interoperability,
fidelity, and efficiency.

Verification, as defined by IEEE/ANSI, is the process of evaluating a system or component to determine
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whether the products of a given development phase satisfy the conditions imposed at the start of that
phase. Validation, as defined by IEEE/ANSI, is the process of evaluating a system or component during
or at the end of the development process to determine whether it satisfies the specified requirements. The
proposed methodology is broken into the design phases represented in Figure 78.1 and uses black- and
white-box software testing techniques to verify, via a structured simulation plan, the elements of each
stage. In this methodology, the concept of a reference model, defined as the next higher model in the
design hierarchy, is used to verify the subsequently more detailed designs. For example, to verify the gate
level model after synthesis, the test suite applied to the RTL model is used. To verify the RTL level model,
the reference model is the fully functional model. Moving test creation, test application, and test analysis
to higher levels of design abstraction, the test description developed by the test engineer is more easily
created and understood. The higher functional models are less complex than their gate level equivalents.
For system and subsystem verification, which include the integration of multiple component models,
higher level models improve the overall simulation time. It has been shown that a processor model at the
fully functional level can operate over 1000 times faster than its gate level equivalent while maintaining
clock cycle accuracy [5]. Verification also requires efficient techniques for test creation via automation and
reuse and requirements compliance capture and test application via structured testbench development.

Interoperability addresses the ability of two models to communicate in the same simulation environ-
ment. Interoperability requirements are necessary because models usually developed by multiple design
teams and from external vendors must be integrated to verify system functionality. Guidelinesand potential
standards for all abstraction levels within the design process must be defined when current descriptions do
not exist. In the area of fully functional and RTL modeling, current practice is to use IEEE Std. 1164 —1993
nine-valued logic packages [15]. Performance modeling standards are an ongoing effort of the RASSP
program.

Fidelity addresses the problem of defining the information captured by each level of abstraction within
the top-down design process. The importance of defining the correct fidelity lies in the fact that information
not relevant within a model at a particular stage in the hierarchy requires unnecessary simulation time.
Relevant information must be captured efficiently so simulation times improve as one moves toward the top
of the design hierarchy. Figure 78.3 describes the RASSP taxonomy [16] for accomplishing this objective.
The diagram illustrates how a VHDL model can be described using five resolution axes; temporal, data
value, functional, structural, and programming level. Each line is continuous and discrete labels are
positioned to illustrate various levels ranging from high to low resolution. A full specification of a model’s
fidelity requires two charts, one to describe the internal attributes of the model and the second for the
external attributes. An “X” through a particular axis implies the model contains no information on
the specific resolution. A compressed textual representation of this figure will be used throughout the
remainder of the paper. The information is captured in a 5-tuple as follows,

{(Temporal Level), (Data Value), (Function), (Structure), (Programming Level}}

The temporal axis specifies the time scale of events in the model and is analogous to precision as
distinguished from accuracy. At one extreme, for the case of purely functional models, no time is modeled.
Examples incdlude Fast Fourier Transform and FIR filtering procedural calls. At the other extreme, time
resolutions are specified in gate propagation delays. Between the two extremes, models may be time
accurate at the clock level for the case of fully functional processor models, at the instruction cycle level
for the case of performance level processor models, or at the system level for the case of application graph
switching. In general, higher resolution models require longer simulation times due to the increased
number of event transactions.

The data value axis specifies the data resolution used by the model. For high resolution models, data
is represented with bit true accuracy and is commonly found in gate level models. At the low end of the
spectrum, data is represented by abstract token types where data is represented by enumerated values,
for example, blue. Performance level modeling uses tokens as its data type. The token only captures the
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FIGURE78.3 A model fidelity classification scheme.

control information of the system and no actual data. For the case of no data, the axis would be represented
with an “X”. At intermediate levels, data is represented with its correct value but at a higher abstraction
(i.e., integer or composite types, instead of the actual bits). In general, higher resolutions require more

simulation time.

Functional resolution specifies the detail of device functionality captured by the model. At one extreme,
no functions are modeled and the model represents the processing functionality as a simple time delay
(i.e., no actual calculations are performed). At the high end, all the functions are implemented within
the model. As an example, for a processor model, a time delay is used to represent the execution of a
specific software task at low resolutions while the actual code is executed on the model for high resolution
simulations. As a rule of thumb, the more functions represented, the slower the model executes during

simulation,

The structural axis specifies how the model is constructed from its constituent elements. At the low
end, the model looks like a black box with inputs and outputs but no detail as to the internal contents.
At the high end the internal structure is modeled with very fine detail, typically as a structural net list of
lower level components. In the middle, the major blocks are grouped according to related functionality.

The final level of detail needed to specify a model is its programmability. This describes the granularity
at which the model interprets software elements of a system. At one extreme, pure hardware is specified
and the model does not interpret software, for example, a special purpose FFT processor hard wired for
1024 samples. At the other extreme, the internal micro-code is modeled at the detail of its datapath control.
At this resolution, the model captures precisely how the micro-code manipulates the datapath elements.
At decreasing resolutions the model has the ability to process assembly code and high level languages as
input. At even lower levels, only DSP primitive blocks are modeled. In this case, programming consists
of combining functional blocks to define the necessary application. Tools such as MATLAB/Simulink
provide examples for this type of model granularity. Finally, models can be programmed at the level of
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the major modes. In this case, a run-time systemn is switched between major operating modes of a system
by executing alternative application graphs.

Finally, efficiency issues are addressed at each level of abstraction in the design flow. Efficiency will be
discussed in coordination with the issues of fidelity where both the model details and information content
are related to improving simulation speed.

78.4 The Executable Requirement

The methodology for developing signal processing systems begins with the definition of the system re-
quirement. In the past, common practice was to develop a textual specification of the system. This
approach is flawed due to the inherent ambiguity of the written description of a complex system. The
new methodology places the requirements in an executable format enforcing a more rigorous descrip-
tion of the system. Thus, VHDL first application in the development of a signal processing system is
an executable requirement which may include signal transformations, data format, modes of operation,
timing at data and control ports, test capabilities, and implementation constraints [17]. The executable
requirement can also define the minimum required unit of development in terms of performance (e.g.,
SNR, throughput, latency, etc.). By capturing the requirements in an executable form, inconsistencies
and missing information in the written specification can also be uncovered during development of the
requirements model.

An executable requirement creates an “environment” wherein the surroundings of the signal processing
system are simulated. Figure 78.4 illustrates a system model with an accompanying testbench. The
testbench generates control and data signals as stimulus to the system model. In addition, the testbench
receives output data from the system model. This data is used to verify the correct operation of the system
model. The advantages of an executable requirement are varied. First, it serves as a mechanism to define
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FIGURE 78.4 Illustration of the relation between executable requirements and specifications.
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and refine the requirements placed ona system. Also, the VHDL source code along with supporting textual
description becomes a critical part of the requirements documentation and life cycle support of the system.
In addition, the testbench allows easy examination of different command sequences and data sets. The
testbench can also serve as the stimulus for any number of designs. The development of different system
models can be tested within a single simulation environment using the same testbench. The requirement
is easily adaptable to changes that can occur in lower levels of the design process. Finally, executable
requirements are formed at all levels of abstraction and create a documented history of the design process.
For example, at the system level, the environment may consist of image data from a camera while at the
ASIC level it may be an interface model of another component.

The RASSP program, through the efforts of MIT Lincoln Laboratory, created an executable require-
ment [18] for a synthetic aperture radar (SAR) algorithm and documented many of the lessons learned
in implementing this stage in the top-down design process. Their high level requirements model served
as the baseline for the design of two SAR systems developed by separate contractors, Lockheed Sanders
and Martin Marietta Advanced Technology Labs. A test bench generation system for capturing high level
requirements and automating the creation of VHDL is presented in [19]. In the following sections, we
present the details of work done at Georgia Tech in creating an executable requirement and specification

for an MPEG-1 decoder.

78.4.1 An Executable Requirements Example: MPEG-1 Decoder

MPEG-1 is a video compression-decompression standard developed under the International Standard
Organization originally targeted at CD-ROMs with a data rate of 1.5 Mbits/sec [20]. MPEG-1 is broken
into 3 layers: system, video, and audio. Table 78.1 depicts the system clock frequency requirement taken
from layer 1 of the MPEG-1 document.! Thesystem time is used to control when video frames are decoded
and presented via decoder and presentation time stamps contained in the ISO 11172 MPEG-1 bitstream.
A VHDL executable rendition of this requirement is illustrated in Table 78.5.

TABLE 78.1 MPEG-1 System Clock Frequency Requirement Example
Layer 1 - System requirement example from ISO 11172 standard

System clock frequency  The value of the system clock frequency is measured in Hz
and shall meet the following constraints:
90, 000 — 4.5 Hz < system_clock_frequency < 90, 000 +- 4.5 Hz

Rate of change of system_clock_frequency < 250 107 Haz/s

The testbench of this system uses an MPEG-1 bitstream created from a “golden C model” to ensure
correct input. A public-domain C version of an MPEG encoder created at UCal-Berkeley [21] was used as
the golden C model to generate the input for the executable requirement. From the testbench, an MPEG
bitstream file is read as a series of integers and transmitted to the MPEG decoder model at a constant
rate of 174300 Bytes/sec along with a system clock and a control line named mpeg_go which activates the
decoder. Only 50 lines of VHDL code are required to characterize the top level testbench. This is due
to the availability of the golden C MPEG encoder and a shell script which wraps around the output of
the golden C MPEG encoder bitstream with system layer information. This script is necessary because
there are no complete MPEG software codecs in the public domain, i.e., they do not include the system
information in the bitstream. Figure 78.6 depicts the process of verification using golden C models. The
golden model generates the bitstream sent to the testbench. The testbench reads the bitstream as a series

'Our efforts at Georgia Tech have only focused on layers 1 and 2 of this standard.
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— system.time.clk process is & clock process that counts at a rate
— of 90kHs as per MPEG-I requirement. In addition, it is updated by
~ the value of the incoming SCR fields read from the ISO11172 atream.
system.time.clock : PROCESS(stcstrobe,sys.clk)
VARIABLE clock.count : INTEGER := 0;
VARIABLE SCR,system_time.var : bit33;
CONSTANT clock.divider : INTEGER = 2;
BEGIN
IF mpeg.go = '1’ THEN
- if atcstrobe is high then update system.time value to latest SCR
IF (stc.strobe = '1') AND (stc.atrobe’EVENT) THEN
system.time <= system-clock.ref;

clock.count := 0; — reset counter used for clock downsample
ELSIF (sys—clk = '1’) AND (sys-clk’EVENT) THEN
clock«ount := clock-count 4 1;
IF clock—count MOD clock-divider = 0 THEN
systemtime.var ;= system-time 4 one;
system.time <= systemtime-var;
END IF;
END IF;
END IF;

END PROCESS system.time-clock;

FIGURE 78.5 System clock frequency requirement example translated to VHDL.
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of integers. These are in turn sent as data into the VHDL MPEG decoder model driven with appropriate
clock and control lines. The output of the VHDL model is compared with the output of the golden model
(also available from Berkeley) to verity the correct operation of the VHDL decoder. A warning message

alerts the user to the status of the model’s integrity.

VHDL MPEG
decoder
check to see if VHDL MPEG decoder
and golden C MPEG decoder output matches
Testbench
150 11172 ‘——  Model Verified / Model Error
bitstream
golden C system layer golden C
a . MPEG
MPEG encapsulation p——
input encoder script decoder
video
MPEG {
vidoo
bitstream

FIGURE78.6 MPEG-1 decoder executable requirement.

The advantage of the configuration illustrated in Figure 78.6 is its reusability. An obvious example is
MPEG-2 [22], another video compression-decompression standard targeted for the ali-digital transmission
of broadcast TV quality video at coded bit rates between 4 and 9 Mbits/sec. The same testbench structure
could be used by replacing the golden C models with their MPEG-2 counterparts. While the system layer
information encapsulation script would have to be changed, the testbench itself remains the same because
the interface between an MPEG-1 decoder and its surrounding environment is identical to the interface
for an MPEG-2 decoder. In general, this testbench configuration could be used for a wide class of video
decoders. The only modifications would be the golden C models and the interface between the VHDL
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decoder model and the testbench. This would involve making only minor alterations to the testbench

itself.

78.5 The Exgcurtgbilgwswpgciﬁcation

The executable specification depicted in Fig. 78.4 processes and responds to the outside stimulus, provided
by the executable requirement, through its interface. It reflects the particular function and timing of the
intended design. Thus, the executable specification describes the behavior of the design and is timing
accurate without consideration of the eventual implementation. This allows the user to evaluate the
completeness, logical correctness, and algorithmic performance of the system through the test bench. The
creation of this formal specification helps identify and correct functional errors at an early stage in the
design and reduce total design time [13, 16, 23, 24].

The development of an executable specification is a complex task. Very often, the required functionality
of the system is not well-understood. It is through a process of learning, understanding, and defining
that a specification is crystallized. To specify system functionality, we decompose it into elements. The
relationship between these elements is in terms of their execution order and the data passing between
them. The executable specification captures:

o the refined internal functionality of the unit under development (some algorithm parallelism,
fixed/floating point bit level accuracies required, control strategies, functional breakdown,
task execution order)

e physical constraints of the unit such as size, weight, area, and power

e unit timing and performance information (I/O timing constraints, I/O protocols, computa-
tional complexity)

The purpose of VHDL at the executable specification stage is to create a formalization of the elements in a
system and their relationships. It can be thought of as the high level design of the unit under development.
And although we have restricted our discussion to the system level, the executable specification may
describe any level of abstraction (algorithm, system, subsystem, board, device, etc.).

The allure of this approach is based on the user’s ability to see what the performance “looks” like.
In addition, a stable test mechanism is developed early in the design process (note the complementary
relation between the executable requirement and specification). With the specification precisely defined,
it becomes easier to integrate the system with other concurrently designed systems. Finally, this executable
approach facilitates the re-use of system specifications for the possible redesign of the system.

In general, when considering the entire design process, executable requirements and specifications
can potentially cover any of the possible resolutions in the fidelity classification chart. However, for any
particular specification or requirement, only a small portion of the chart will be covered. For example,
the MPEG decoder presented in this and the previous section has the fidelity information represented by

the 5-tuple below,

Internal: {(Clock cycle), (Bit true — Value true), (All), (Major blocks), (X)}
External: {(Clock cycle), (Value true), (Some), (Black box), (X)},

where (Bit true — Value true) means all resolutions between bit true and value true inclusive.

From an internal viewpoint, the timing is at the system clock level, data is represented by bits in some
cases and integers in others, the structure is at the major block level, and all the functions are modeled.
From an external perspective, the timing is also at the system clock level, the data is represented by a
stream of integers, the structure is seen as a single black box fed by the executable requirement and from
an external perspective the function is only modeled partially because this does not represent an actual

chip interface.
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78.5.1 An Executable Specification Example: MPEG-1 Decoder

Asan example, an MPEG-1 decoder executable specification developed at Georgia Tech will be examined in
detail. Figure 78.7 illustrates how the system functionality was broken into a discrete number of elements.
In thisdiagram eachblock represents a process and the lines connecting them are signals. Three major areas
of functionality were identified from the written specification: memory, control, and the video decoder
itself. Two memory blocks, video_decode_memory and system level_memory are clearly labeled. The
present_frame_to_decode_file process contains a frame reorder buffer which holds a frame until its
presentation time. All other VHDL processes with the exception of decode_video _frame_process are
control processes and pertain to the systems layer of the MPEG-1 standard. These processes take the
incoming MPEG-1 bitstream and extract system layer information. This information is stored in the
system_level_memory process where other control processes and the video decoder can access pertinent
data. After removing the system layer information from the MPEG-1 bitstream, the remainder is placed in
the video_decode_memory. Thisis theinput buffer to the video decoder. It should be noted that although
MPEG-1 is capable of up to 16 simultaneous video streams multiplexed into the MPEG-1 bitstream only
one video stream was selected for simplicity.

The last process, decode_video_ frame_process, contains all the subroutines necessary to decode the
video bitstream from the video buffer (video_decode_memory). MPEG video frames are broken into 3
types: (I)ntra, (P)redictive, and (B)idirectional. I frames are coded using block discrete cosine transform
(DCT) compression. Thus, the entire frame is broken into 8x8 blocks, transformed with a DCT and the
resulting coefficients transmitted. P frames use the previous frame as a prediction of the current frame.
The current frame is broken into 16 x 16 blocks. Each block is compared with a corresponding search
window (e.g., 32 x 32, 48 x 48) in the previous frame. The 16 x 16 block within the search window
which best matches the current frame block is determined. The motion vector identifies the matching
block within the search window and is transmitted to the decoder. B frames are similar to P frames except
a previous frame and a future frame are used to estimate the best matching block from either of these
frames or an average of the two. It should be noted that this requires the encoder and decoder to store
these 2 reference frames.

The functions contained in the decode video_ frame_process are shown in Fig. 78.8. In the diagram,
there are three main paths representing the procedures or functions in the executable specification which
process the I, P, or B frame, respectively. Each box below a path encloses all the procedures executed
from within that function. Beneath each path is an estimate of the number of computations required to
process each frame type. Comparing the three executable paths in this diagram, one observes the large
similarity between each path. Overall, only 25 unique routines are called to process the video frame. By
identifying key functions within the video decoding algorithm itself, efficient and reusable code can be
created. For instance, the data transmitted from the encoder to the decoder is compressed using a Huffman
scheme. The procedures vic, advance_bit, and extract_n_bits perform the Huffman decode function and
miscellaneous parsing of the MPEG-1 video bitstream. Thus, this set of procedures can be used in each
frame type execution path. Reuse of these procedures can be applied in the development of an MPEG-
2 decoder executable specification. Since MPEG-2 is structured as a super set of the syntax defined in
MPEG-1, there are many procedures that can be utilized with only minor modifications. Other procedures
such as motion_compensate_forward and idct can be reused in a variety of DCT-based video compression
algorithms.

The executable specification also allows detailed analysis of the computational complexity on a proce-
dural level. Table 78.2 lists the computational complexity of some of the procedures identified in Fig. 78.8.
This breakdown identifies what areas of the algorithm are the most computationally intensive and the
numbers were arrived at through a data flow analysis of the VHDL code. Within the MPEG-1 video
decoder algorithm, the most intense computational loads occur in the inverse DCT and motion compen-
sation procedures. Thus, such an analysis can alert the user early in the design process to potential design
issues. While parallelism is a logical topic for the data and control flow modeling section, preliminary
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FIGURE 78.7  System functionality breakdown for MPEG-1 decoder.

investigations can be made from the executable specification itself. With the specifications captured in
a language, execution order and data passing between procedures are known precisely. This knowledge
facilitates the user in extracting potential parallelism from the specification. From the MPEG-1 decoder
executable specification, potential parallelism can be seen in several areas. In an I frame, no data depen-
dencies are present between each 8 x 8 block. Therefore, an inverse DCT could potentially be performed
on each 8 x 8 block in parallel. In P and B frames, data dependencies occur between consecutive 16 x
16 blocks (called macroblocks) but no data dependencies occur between slices (a grouping of consecutive
macroblocks). Thus, parallelism is potentially exploitable at the slice and macroblock level. This infor-
mation is passed to the data/control flow modeling phase where more detailed analysis of parallelism is
done.

It is also possible to delve into implementation requirement issues at the executable specification level.
Fixed vs. floating point trade-offs can be examined in detail. The necessary accuracy and resolution
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FIGURE 78.8 Description of procedural flow within MPEG-1 decoder executable specification.

required to meet system requirements can be determined through the use of floating and fixed point
packages written in VHDL. At Georgia Tech, fixed point packages have been developed. These packages
allow the user to experiment with the executable specification and see the effect finite bit accuracy has
on the system model. In addition, packages have been developed which implement specific arithmetic
architectures such as the ADSP 2100 [25]. This analysis results in additional design requirements being
passed to hardware and software developers in later design phases.

Finally, the executable specification allows the explicit capture of internal timing and control flow
requirements of the MPEG-1 decoding algorithm itself. The written document is imprecise about the
details of how timing considerations for presentation and decoder time stamps will be handled. The
control necessary to trigger present and decode video frame events is difficult to articulate in a written



78-14 DSP Software and Hardware

TABLE 78.2  Computational Complexity of Some Specification Procedures

_ Procedure . IntAdds IntDiv. Comp IntMult exp RealAdd  Real Mult
vle — - 2 - - - -
advance_bit 10 16 9 - - - -
int_to_unsigned_bit 8 16 8 - - - -
extract_n_bits 24 16 20 - - - -
look_for_start_codes 9 16 10 - - - -
runlength_decode 2 - 1 1 - - -
block-reconstruct 66 64 258 193 - - -
idet - - - - - 1024 1216
qmotion_compensate_forward 1422 646 1549 16 - - -

form. The most difficult aspects of coding the executable specification for a MPEG-1 decoder were these
considerations. The decoder itself hinges on developing a mechanism for robustly determining when to
decode or present a frame in the buffer. Events mustbe triggered using a system time clock which isupdated
from the input bitstream itself. This task is handled by five processes (start_code, mpeg_layer _one,
video_decode_trigger, present _frame_trigger, present_frame_to_decode_file) grouped around
a common memory (system {evel _memory). This memory was necessary to allow each concurrent
process to access timing information extracted from the system layer of the input bitstream. These timing
and control considerations had to fit into a larger system timing requirement. For a MPEG-1 decoder, the
most critical timing constraints are initial latency and the fixed presentation rate (e.g., 30 frames/sec). All
other timing considerations were driven by this requirement.

78.6 Data and CoEtr_g_l Flow Modelin_g )

This modeling level captures data and control flow information in the system algorithms. The objective
of data flow modeling is to refine the functional descriptions in the executable specification and capture
concurrency information and data dependencies inherent in the algorithm. The output of the refinement
process is one or a few manually generated implementation independent representations of the algorithm.
These multiple implementations capture potential algorithmic parallelism at a primitive level where prim-
itives are defined as that set of functions contained in a design library. The primitives are signal processing
functions such as Fast Fourier Transforms or filter routines at coarse-grained levels to adders and multipli-
ers at more fine-grained levels. The breakdown of primitive elements depend on the granularity exploited
by the algorithm as well as potential architectural design paradigms to which the algorithm is mapped. For
example, if the design paradigm demands architectures using multiple commercial-off-the-shelf (COTS)
RISC processors, the primitives consist of signal processing functional block level elements such as FFTs
or FIR filters which exist as performance optimized library elements available for the specific processor.
For custom computationally intense designs, the data flow of the algorithm may be dissected into lower
primitive components such as adders and multipliers using bit-slice architectures. In our design flow, the
fidelity captured by data/control flow models is shown below:

Internal: {(X), (Value true — Composite), (All), (X), (Major modes)}
External: {(X), (Value true — Composite), (X), (X), (X)}.

Because the models are purely functional and their major objective is to refine the internal representation of
the algorithm, there is no time information captured by its internal or external representation as illustrated
by the “X”. The internal data processed by the model and external dataloaded into the model are typically
represented by standard data types such as float and/or integer and in some cases by composite data types
such as records or arrays. All internal functionality is represented and is verified using the same data
presented to the executable specification. No function is captured via external interfaces since data is input
to the model through file input/output. The data processed by the executable specification is also processed
by the data/control flow model. No internal or external structural information is captured since the model
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is implementation independent. Its level of programmability is represented at the application graph level.
The applications are major modes of the system under investigation and hence at a low resolution. In
general, because the primitive elements can represent adders and/or multipliers, programmability for
data/control flow models can resolve to higher resolutions including the microcode level.

The implementation independent representations are compared with the executable specification using
the test data supplied by the requirements development phase to verify compliance with the original algo-
rithm design. The representations are then input to the architecture selection phase and, with additional
metrics, determine the final architecture of the system.

Signal processing applications inherently follow the data flow execution model. Processing Graph
Methodology (PGM) [26] from Naval Research Laboratory was developed specifically to capture signal
processing applications. PGM supports specification of full system data flow and its associated control. An
application is first captured as a graph, where nodes of the graph represent processing and edges represent
queues that hold intermediate data between nodes. The scheduling criteria for each node is based on the
state of its corresponding input/output queues. Each queue in the graph can be linked to one node at a
time. Associated with each queue is a control block structure containing information such as size, current
amount of data, and threshold. A run-time system provides a set of procedures used by each node to check
the availability of data from the upstream queue or available space in the downstream queue. Applications
consist of one or more graphs, one or more I/O procedures, and a run-time system interfaced with one or
more command programs. The PGM graphs serve as the implementation independent representation of
the algorithm discussed earlier. An example of a 2-D FFT PGM graph is presented in the next section.

Under the support of the RASSP program, a set of tools is being developed by Management Commu-
nications and Control, Inc. (MCCI) and Lockheed Martin Advance Technology Laboratories (27, 28].
The toolset automates the translation of software architecture specifications to design implementations
of application and control software for a signal processing system. Hardware/software architectures are
presented to the autocoding toolset as PGM application data flow graphs along with a candidate architec-
tures file and graph partition lists. The lists are generated by hardware/software partitioning tools. The
proposed partitions are then simulated for performance and verified against the top level specification
for correct functionality. The verified partition graphs are then used as inputs to detailed design level
autocode tools that generate actual source code. The source code implements the partitions processing
specifications using the target processor’s math library. It also produces a memory map converting all
queues and variables to static buffers. Finally the application graph, with its set of source files, are trans-
lated to run-time data structures that are used by the run-time system to create an executable image of the
application as distributed tasks on the target processors.

Other tools provide paths from specification to hardware and are briefly mentioned. The Ptolemy [29,
30] design system from the University of California at Berkeley provides a synchronous data flow domain
which can be used to perform system level simulations. Silage, another product of UC Berkeley is a data
flow modeling language. Data Flow Language (DFL), a commercial version of Silage is used in Mentor
Graphics’ DSP Station to perform algorithm/architecture tradeoffs. It also provides a path to synthesis as

a high-level design entry tool.

78.6.1 Data and Control Flow Example

An example of a small PGM application is presented in Fig. 78.9. The graph represents a two dimensional
FFT program implemented in PGM. The graph captures both the functionality and the data flow aspects
of the application. The source data is read from a file and represents the [/0 processor that would normally
provide the input data stream. The data are then distributed to a number of queues serving as inputs to
the FFT primitives that perform the operations on the rows of the input stream. The output of the FFT
primitives flow to another set of queues that are input to the corner turn graph. Once the data are sorted
correctly, they are sent to the input queues of the column FFT primitives. The graph is then executed by
the simulator where the functionality, queue sizes, and communication between nodes are examined. This
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same graph is input to the hardware/software partitioning tools that generate the partition list. Given the
partition list and the hardware configuration file, the autocode tool set generates the load image for the
target platform.

Input Channel
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FIGURE 789 Example PGM application graph.

78.7 Architectural Design

Signal processing systems are characterized as having high throughput requirements as well as stringent
physical constraints. However, due to economic objectives, signal processing systems must also be de-



