'5"5:.’ ?Wi;l;a L Applying
Software
Engineering

Principles

Little, Brown Computer Systems Series

Library of Congress Cataloging in Publication Data

Marca, David.
Applying software engineering principles.

(Little, Brown computer systems series)

1. Electronic digital computers — Programming.
I. Title. II. Series.
QA76.6.M358 1983 001.64'2 83-7964
ISBN 0-316-54574-0

Copyright © 1984 by David Marca

Allrights reserved. No part of this book may be reproduced in any form or by any electronic or mechanical
means including information storage and retrieval systems without permission in writing from the pub-
lisher, except by a reviewer who may quote brief passages in a review.

(Library of Congress Catalog Card No. 83-7964
ISBN 0-=31L-54574-0
S 8 7 6 5 4 3 2 1

MV

Published simultaneously in Canada by Little, Brown & Company (Canada) Limited
Printed in the United States of America

Preface

This book is designed for professional programmers and professional-minded
students — that is, it is designed for individuals who develop, or intend to develop,
software in a professional setting.

Software engineering is the act of an individual who learns to develop
software in a practical setting.

Successful software developers seem to have the ability to grow from an existing
base of knowledge. They frequently modify their work habits, applying past experiences
to new job situations. This book presents software engineering principles that enable
programmers to share the experiences of many other professionals.

Sources of Professional Learning

Novice programmers learn about tools and techniques from courses and evaluate
their effectiveness by using them on the job. Novices advance to higher levels of
professionalism by learning from others. In formal reviews and walkthroughs, they
learn ways to apply tools and techniques. From working in small teams, they learn to
observe the work habits of others and to evaluate new concepts by placing them in an
open forum.

The best professionals learn the difficult and rewarding task of stepping back and
observing their own work. Learning comes easier when you know yourself — you can
strengthen your abilities, compensate for deficiencies, and identify areas for improve-
ment.

The software engineering principles in this book were developed from all these
levels of professional learning. Some were learned from books or schooling, some by
watching others work, and some by reflecting on my own work. This is, therefore, a
book of experience woven with facts; it is an act of sharing.

Software engineering principles are the whys of developing software; they
state the reasons behind the programmer’s day-to-day work.

Learning from This Book
This book is not overly concerned with syntax, nor with writing FORTRAN
statements on coding forms, nor with drawing flowcharts of programs. This is an

vii

viii

PREFACE

advanced programming book concerned with the nature of programming once the syntax
is learned.

This book covers more than what might normally be considered relevant to an
advanced programming course. It describes what you should be thinking about when you
are programming — that is, it describes how you apply software engineering principles
to make a computer language represent a solution to a problem.

The principles and associated examples given throughout the book describe the
paradigms I think are the most important ones for the engineering of software. The
software examples, written in Microsoft’s FORTRAN for the TRS—80 microcomputer,
can be implemented on almost any computer.

Software engineering principles generalize the ways of writing software.

These principles and examples will, perhaps, confirm the way you engineer
software. Or they may show you a different way of looking at the programming process,
describe a new concept for you, or lead you to write down principles of your own. I hope
that you will learn as much about the engineering of software from reading this book as I
have from writing it.

Why should you read this book? Because it will, hopefully, make you think about
the way you engineer software. All of the principles and most of the discussions apply to
any computer language. So, whether you program exclusively in FORTRAN or in
twenty different languages, you should find much related to your work.

David Marca

Research & Development Group
SofTech, Inc.
Waltham, MA

April, 1983

ACKNOWLEDGMENTS

Acknowledgments

The production of a book is never the work of one person. This book is no
exception, for it is the synthesis of the knowledge and the experience of many in the
computing field. The most appropriate acknowledgment of their work is the collection of
references at the end of this book.

I am especially grateful to all the computing professionals I have worked with and
have learned from during my career. During the past twelve years, they have openly
shared their ideas, listened to my views, and never hesitated to tell me when I was wrong.

Thanks also goes to Jerry Weinberg for his help in directing my writing efforts
when no one else could; and to Beth Anderson, developmental editor of the second
manuscript, who helped me become a better writer.

Contents

Part |
Important Aspects
of Software Engineering

1 Soiftware Engineering Concepts 4
1.1 Practical Considerations During Software Development
1.2 A Need for Engineering Principles 5
1.3 The Software Engineer 5
1.4 Some Engineering Factors 7

Human Errors 7
Budget 8
Performance 10
1.5 Engineering Goals 10
Timeliness 11
Efficiency 11
Reliability 11
Simplicity 12
Cost-Effectiveness 12
Modifiability 13
Trade-Offs 13
1.6 Keys to Software Engineering 14
Questions and Exercises 15
For Further Study 15
For Your Next Project 15

2 Organizing Engineering Activities 16
2.1 The Software Development Cycle 16
Analysis 18
Design 18

Xi

Xii

CONTENTS

Implementation 18

Installation 18
2.2 Changing Software 19
2.3 Repetition of the Software Development Cycle 20
2.4 Engineering with the Software Development Cycle 22
2.5 Programming and Programming Products 23
Questions and Exercises 25

For Further Study 25

For Your Next Project 25

Fundamentals of Modeling 26

3.1 Models of Software 26
3.2 Model Subject, Purpose, and Viewpoint 26
3.3 Modeling with a Language 28
3.4 Model Form 29
3.5 Creating Models 30
3.6 Validating Models 32
Questions and Exercises 34
For Further Study 34
For Your Next Project 34

Engineering with Models 35

4.1 Types of Software Engineering Models 35
Problem Statement Models 35
Requirements Models 35
Design Models 36
Implementation and Operation Models 36

4.2 Characteristics of Software Enginering Models 36
Operational Characteristics 36
Abstractional Characteristics 37
Language Characteristics 37

4.3 Designs as Models 38

4.4 Programs as Models 40

Questions and Exercises 41
For Further Study 41
for Your Next Project 41

CONTENTS

Part Il
Engineering
with a Computer Language 45

5 Preparing to Code 46

5.1 Learning a Programming Language 46
5.2 Building with Language Primitives 48
5.3 The Template Concept 50
5.4 Compiler Restrictions 51
5.5 Engineering with Templates 52
Questions and Exercises 54

For Further Study 54

For Your Next Project 54

6 Structuring Software 55
6.1 Making Programs 55
6.2 Structuring Data and Algorithms 56
6.3 Limits to Structuring 57
Questions and Exercises 58
For Further Study 58
For Your Next Project 58

7 Structuring Data 59
7.1 FORTRAN Data Types 59
7.2 Arrays 60
7.3 Subscripts 61
7.4 Records 62
7.5 Complex Data Structures 64

Nodes 64

Linear Linked Lists 65
Rings 66

Trees 66

7.6 Building Data Structures 67
Questions and Exercises 68
For Further Study 68
For Your Next Project 68

xiii

Xiv

CONTENTS

8

Structuring the Algorithm 69
8.1 Selection Constructs 69
IF-THEN Construct 69
IF-THEN-ELSE Construct 71
CASE Construct - 72
8.2 Repetition Constructs 73
DO-WHILE Construct 73
DO Construct 74
Using Repetition Constructs 75
8.3 Hierarchy and Subprograms 78
Boundaries 78
Interface Points 78
Transfer of Control 78
Limited Scope of Variables 79
Representing Subprograms 79
Questions and Exercises 87
For Further Study 87
For Your Next Project 87

Structuring Programs 88

9.1 Parallel Structure for Data and Algorithms
Sequencing 88
Selecting 90
Repeating 91
Ordering Hierarchically ~ 93
9.2 Copying and Renaming Data 93
9.3 Manipulating Static Data Structures 94
Building Static Data Structures 94
Searching Static Data Structures 96
9.4 Manipulating Dynamic Data Structures 97
Searching Forward 97
Searching Backward 98
Building a Complex Data Structure 100
9.5 Data Reorganization and Program Complexity
Early Reorganization 101
Late Reorganization 101
Questions and Exercises 104
For Further Study 104
For Your Next Project 105

88

101

CONTENTS

Part i
Engineering
with Existing Software 107

10 The Role of Subprograms in Software Engineering 108

11

12

10.1 Engineering with Subprograms 108
10.2 Isolating and Separating Code into Subprograms 109
Summarizing Similarities 110
Summarizing Differences 110
10.3 Reusing and Replacing Subprograms 110
10.4 Modularizing to Increase Portability 111
10.5 Testing Subprograms 112
Phased Testing 113
Incremental Testing 113
10.6 Integrating Subprograms 113
Top-Down Integration 114
Bottom-Up Integration 114
Questions and Exercises 115
For Further Study 115
For Your Next Project 116

Making Good Subprograms 117
11.1 Choosing the Correct Kind of Subprogram 117
11.2 Supporting Documentation 123
11.3 Subprogram Content 127
11.4 Coding the Interface 128
11.5 Data Transfer Across the Interface 131
Questions and Exercises 132
For Further Study 132
for Your Next Project 132

Software Tools 133
12.1 Software Building Blocks 133
12.2 The Software Tool Concept 134
12.3 Software Tool Properties 134
Adaptability 134
Simple Interfaces 135
Simple Functionality 136

XV

XVi CONTENTS

13

14

15

12.4 Types of Software Tools 137
Subprograms 137
Subsystems 137
Programs 138

12.5 Cost Considerations 138

12.6 Using Software Tools 139
Tool Quality 139
Tool Applicability 140
Design Impact 140

Questions and Exercises 140
For Further Study 140
For Your Next Project 141

Some Software Development Tools 142

13.1 Source-Level Debugging 142

13.2 Workings of a Source-Level Debugger 143

13.3 Trace and Display Tools 143
13.4 Extending a Computer Language 150
13.5 A FORTRAN String-Handling Facility 152
Requirements 152
Defining a Subsystem 152
Interface Design 153
Using the Tool 153
Maintenance Issues 155
Questions and Exercises 156
for Further Study 156
For Your Next Project 156

Engineering with Filters 157
14.1 Filter Concepts 157
14.2 Operations of a Filter 159
14.3 Data Streams 160
14.4 Data Transformation Rules 162
Questions and Exercises 163

for Further Study 163

for Your Next Project 164

Table-Driven Software 165

15.1 Separating Control and Transformation Logic
15.2 Modeling the Behavior of a System 167

165

CONTENTS

15.3 Modeling Software Behavior 171 .
15.4 Specifying Program Control Rules 177
15.5 Finite-State Machines 181
Questions and Exercises 183

For Further Study 183

For Your Next Project 184

Part IV
Engineering
by Separating Concerns 187

16 Human Factors 188

17

16.1 How a Person Thinks 188
16.2 The Environment Presented by the Computer 189
16.3 Relationships Between the Person and the Computer 190
16.4 Human Limitations 191

Short-Term Memory 191

Channel Capacity 192
16.5 Concepts of Man-Machine Communications 193
16.6 Problem Solving at the Terminal 195

Part Versus Whole 195

Massed Versus Spaced 196

Insight Versus Trial and Error 196

Behavior at the Terminal 196
16.7 Closures 198
Questions and Exercises 199

for further Study 199

For Your Next Project 200

Building User Interfaces 201
17.1 Display Screen Simplification 201
Encoding Data 201
Screen Size 203
Object Compatibility 209
17.2 Designing Within Human Limitations 210
17.3 Types of Dialogues 213
17.4 Some Data Entry Techniques 213

XVii

XViti

CONTENTS

18

19

17.5 Increasing User Interface Complexity 216
17.6 Handling Errors 217
Questions and Exercises 218

For Further Study 218

For Your Next Project 218

Machine Factors 220
18.1 Main Storage Characteristics 220
18.2 Secondary Storage Characteristics 221
18.3 Compensating for Memory Deficiencies 222
18.4 Impacts on Programming 222
Questions and Exercises 224
For Further Study 224
For Your Next Project 224

Building Data Management Software 225
19.1 Physical and Logical Data Management 225
19.2 Separating Data Management Logic 226
19.3 Language Extension for Logical Data Management
19.4 Separating Data and Structure 228
Questions and Exercises 230

For Further Study 230

For Your Next Project 230

Appendix:
An Implementation of the
““Get Character” Finite-State Machine 233

References 251

Index 256

227

David Marca

Applying
Software
Engineering
Principles

A GIFT OF

THE ASIA FOUNDATION

BOOKS FOR ASIA
SAN FRANGCISCO, CALIFORNIA, USA

ERETE o o8 |

Little, Brown and Company
Boston Toronto

FIGURE I-1: A Model of Engineering Software

Goals

Engineering

Principles

Factors

Y

Needs &
Problems

Engineer

Software
Solutions o

Software

A

Models Models

Software

Development

Cycle

Part |

Important Aspects of
Software Engineering

It is more important to understand about engineering than about coding. That is,
software engineers are engineers first and builders of software second; they apply
engineering concepts to their work.

Much work precedes the construction of software, though. Software engineers
must establish the context for their work. And they must spend some time setting up their
projects correctly.

Starting a project is hard, because you must

— define goals,
— formulate an approach to reach those goals, and
— assemble a project team to implement the approach.

To explain, making trade-offs among conflicting factors is a large part of setting goals.
Also, defining cycles of software development and developing modeling guidelines help
establish an approach. Finally, selecting each individual in the project team requires
matching skills and personalities with the approach.

Mistakes made early in a project can jeopardize its success. So software en-
gineers invest time in getting a good start, knowing that the success of the project may
depend upon their first few decisions.

PRINCIPLE: Project Start-up
The hardest part of many projects is getting them started correctly.

Software
Engineering
Concepts

Engineering means reaching established goals, within the constraints of the real
world, according to a plan. Software is the result of an engineering process in which
developers use engineering concepts to build programs. These concepts can be sum-
marized by a set of principles that can be deduced by starting with a very simple fact:
Software is engineered in a practical setting [WGUS82).

1.1 Practical Considerations During Software Development

Probably the most difficult aspects of building well-engineered software are
identifying and assessing practical issues. Software engineers understand that they are
performing an engineering activity. What separates software engineers from other
programmers is their ability to make decisions with the practical issues in mind during all
phases of software development.

There is a distinction between software science and software engineering. The
distinction is that the results of engineering need only be useful, not perfect. Getting
software to work well enough to be useful is the essence of software engineering [YE79].
But often something very useful cannot be built by proven methods. Software systems
fall into this category. So software developers frequently must build systems without an
exact science to back them up.

DEFINITION: Software Engineering
Software engineering builds useful software.

Today’s software systems are considered products of engineering because they
cannot be proven to operate correctly, yet they perform very useful functions. In other
words, a software system need not be perfect to be useful. For example, the 0S/360
project [BF75] comprised hundred of people who developed more than a million lines of
code. During initial development of the software no one proved that each module
operated correctly. Instead, test cases were used to verify that the operating system

