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PREFACE

Although the first appearance of statistics as a science dates to the
seventeenth century, it was not until much later that the papers of F. .
Wilcoxon (1945) and H.B. Mann and D.R. Whitney (1947) provided the
initial theoretical foundation for the discipline of nonparametric statistics.
In the years that followed, further development took place at a fast pace. .
However, when a field matures this rapidly, it is often difficult for
textbooks to keep pace. Although early texts on the methodology were
completed by Kendall (1948) and Siegel (1956), and on the theory by
Fraser (1957), it was not until the late 1960s and early 1970s that the newly
developed general theory again reached the settled confines of a book.
During that period methodological texts appeared by Conover (1971),
Hollander and Wolfe (1973), Lehmann (1975), and Gibbons (1976). In
addition, nonparametric theory books at the intermediate level were writ-
ten by Noether (1967), Hajek (1969), and Gibbons (1971), while more
advanced texts were written by Hajek and Sidak (1967), and Puri and Sen
(1971). ,

The level of this text is intermediate. The reader is expected to have
completed an introductory mathematical statistics sequence at the level of
Hogg and Craig (1978), Mood, Graybill, and Boes (1974), or Dudewicz
(1976), for example. This, of course, entails that the reader be familiar with
the basic concepts of statistical inference and have a good knowledge of
advanced calculus. The goal of our approach is to bring the reader to a
basic understanding of the concepts and theory that are important to the
field of nonparametric statistics. An equally important goal to us, however,
is to develop this theory without sacrificing the intuitive flavor that is
prevalent in most of the early work in nonparametric statistics and, indeed,
remains an important force in current nonparametric usage and research.
Thus, for example, we devote the entire Chapter 2 to the introduction of
the most important basic approaches that lead to nonparametric distribu-
tion-free tests of hypotheses. The emphasis there is on the nature fo
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viii Preface

nonparametric procedures, and the sign, Wilcoxon signed rank, and
Mann-Whitney~Wilcoxon rank sum tests are presented as illustrations of
the important counting and ranking techniques. In addition, we choose to
introduce the reader to the theory behind the nonparametric procedures by
way of U-statistics. This again serves to maintain the intuitive nature, and
provides a.lead-in to the more comprehenswe theory of general linear rank
statistics included later.

We touch on the most prominent hypothesis testing settings, but detailed
coverage is provided only for the one- and two-sample problems. However,
the book is not devoted solely to tests. Confidence intervals and point
estimation are discussed in detail in Chapters 6 and 7, respectively. We feel
their inclusion is vital since they play an increasingly important role in
modern nonparametric development.

The text is not intended to be a comprehensive presentation of the
existing nonparametric: methodology. Such a need is satisfied by the texts
by Conover (1971), Hollander and Wolfe (1973), Lehmann (1975), and
Gibbons (1976). The -surpose of the text is instead to present the important
mathematical statistics tools that are fundamental to the development of
nonparametric statistics. Thus the text is organized around these tools
rather than around methodological topics. We emphasize (1) techniques
for making a test distribution-free, (2) U-statistics, (3) asymptotic effi-
ciency, (4) the Hodges-Lehmann technique for creating a confidence
interval and a point estimator from a test, and (5) linear rank statistics, to
name just a few. We have also included some currently developing areas,
such as M-estimation, adaptive testing procedures, rank-like techniques,
and partially sequential sampling schemes. We have not attempted to be
complete on any of these topics—actually, completeness is impossible in
such active arenas—but we have tried to acquaint the reader with the
fundamental ideas. Our goal is to present a more comprehensive descrip-
tion of the basic tools of nonparametrics than is available in current
. intermediate level texts, while remaining well below the mathematical level
of Hajek and Sidak (1967), and Puri and Sen (1971).

The material in the book can be used for either a one-semester or a
two-quarter course. The underlying core for either of these is found in
Chapters 1-10, inclusively. Any remaining time could be devoted to topics
from Chapters 11 and 12 most appropriate to an individual instructor. In
addition, Sections 3.5, 3.6, 4.3, 6.3, 7.3, and 7.4 could be omitted without
affecting the coverage of later material. An instructor who wished to
emphasize testing problems could skip Chapters 6 and 7 and include them
later as time permitted. This would not destroy the flow of the topics.

The Appendix at the end of this book includes (1) a list of the major
distribution types mentioned in the text, (2) a discussion of our representa-
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tion for integrals, and some theorems for manipulating them, (3) state-
ments of important results in mathemratical statistics that are used but not
proved in text, and (4) stateménts of selected mathematical results applied
in text. .

The reference system within this book lists chapter, section, and quantity
within the section, in that order. Thus a citation of equation (11.4.8) refers
to the eighth numbered quantity in Section 4 of Chapter 11. Within a given
section all quantities assigned reference numbers are numbered sequen-
tially. Thus equations, theorems, lemmas, etc., are included in the same
numbering scheme. The only exception is for the exercises, which are
numbered separately in a sequential fashion within each section. Refer-
ences to the Appendix use the letter A in place of the chapter number.

We have benefited from the help of numerous people. Michael Fligner
read almost all of the manuscript and made many valuable suggestions.
Tim Robertson also made a number of important contributions. Kathy
Altobelli gave portions of the manuscript a hard line-by-line reading, and
her suggestions led to an improved manuscript. James Kepner, Ping Lu,
and Tie Hua Ng also contributed suggestions and exercise solutions.

We were able to collaborate on this text during the academic year
19761977 while Ronald Randles was a Visiting Associate Professor at
Ohio State University. We wish to thank The University of Iowa and The
Ohio State University, and particularly Robert V. Hogg and D. Ransom
Whitney, for making this arrangement possible.

Preliminary versions of this book were used in five separate offerings of
the theoretical nonparametric statistics sequences at The Ohio State
University and The University of lowa. We are appreciative of the con-
tributions of the many students who corrected errors and cleared up
ambiguities.

This book was written and typed at The Ohio State University and The
University of lowa. We thank Kathleen Narcross (who did most of the
typing), Amy Bernstein, Ada Burns, Rozanne Huff, Barbara Meeder,
+ Carolyn Randles, and Gloria Rudolph for their excellent preparation of
various versions of the manuscript.

It was our pleasure to work with Beatrice Shube, editor in Wiley-Inter-
science, on this project.

RoNALD H. RANDLES
Doucras A. WoLFE

ITowa City, Iowa
Columbus, Ohio
January 1979
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] | PRELIMINARIES

1.1. Introduction

The rudiments of nonparametric statistics originate in the latter part of the
nineteenth century. Some early contributions are cited in a survey paper by
H. Scheffé (1943). However, it was not until the pioneering papers of F.
Wilcoxon (1945) and H. B. Mann and D. R. Whitney (1947) that the
theoretical foundations of nonparametric statistics began to be assembled.
In the ensuing years the advances in this field have been of najor
proportions, providing in many cases important techniques in mathemati-
cal statistics indigenous to nonparametric theory but finding usage in
parametric settings as well. The concept of asymptotic relative efficiency
proposed by Pitman (1948) and the development of the theory of U-statis-
tics initiated by Hoeffding (1948) are prime examples of such contribu-
tions.

The purpose of this text is to introduce the important theoretical
foundations of nonparametric statistics, both classical and current. Conse-
quently, the text is organized around them rather than around methodo-
logical topics. We are not able to present a complete accounting of these
subjects, since many are currently active research arenas, but we have tried
to provide the reader with the fundamental concepts and tools.

We begin with a brief description of some of the notation and terms
which are used throughout the text. All random variables will assume
values on the real line (which is denoted by R). The distribution of a
random variable, say X, is most often described in terms of its cumulative
distribution function (abbreviated c.d.f.), say F(-), which is defined to be

F(x) = P[ X <x], ~co < x < 0.

In this text we emphasize continuous random variables, each of which is
characterized by a nonnegative density function, say f(x). that satisfies

1



2 Preliminaries

J7 f(x)dx=1. The density is related to the c.d.f. in that F'(x) exists and
equals f(x) at all but at most a countable number of x-values. We then
have

Pla<X<b] = P[a<X<b] #fbf(x)dx, for any constants a < b.
a

The support of a continuous random variable is defined to be the closure
of the set

{x15(x)>0}.

On occasion we discuss a discrete random variable, say, X. Its distribu-
tion is described by the probability function

p(x) = P[X=x], -0 <x < o0,

which is related to its c.d.f. through

F(x) = P[X<x] = 3 p(1),

t&x

where the latter sum is over all 7 <x such that p(r) >0. The support of this
discrete random variable is defined as

{11p(1)>0}.

If X,,...,X, denotes a random sample from some underlying populaticn,
we say that these random variables are independent and identically distrib-
uted (abbreviated i.i.d.). In such contexts, the sample mean refers to

E

:I-—

and the sample variance is

A vector of n random variables (not necessarily i.i.d.) is represented by
X=(X,....X,)

It is also useful to note the definition of an indicator function that
occurs repeatedly in this text, namely,

¥(1)=0, ifr<0,
=1 ift>0.



1.2. Order Statistics 3

The symbol ¥(-) is reserved for this purpose. (The only exception occurs
in Section 7.4.) One final notation that is widely used in this text is that for
the greatest integer function. For any real number x we let [[x]} represent
the greatest integer less than or equal to x.

1.2. Order Statistics

In many statistical analyses the information from a random sample is
utilized through the ordered values of the sample. These ordered sample
observations are referred to as order statistics, and they play a fundamental
role in the development of nonparametric statistics, both for hypothesis
tests and for estimators. In this section we develop some of the basic
properties of order statistics that are used throughout the rest of the book.
For a more detailed accounting, see Sarhan and Greenberg (1962) or
David (1970). ‘

The Joint Distribution

Let the continuous random variables X),,...,X, denote a random sample
from a population with c.d.f. F(x) and density f(x). Let Xapi=1,...,n, be
the ith smallest of these sample observations. We refer to X m < €KX,
as the order statistics for the random sample X,,...,X,. Unlike the Xs
themselves, the order statistics are neither mutually independent nor iden-
tically distributed. We obtain their joint distribution by a change of
variable.

Theorem 1.2.1. Let X,< -+ <X, be the order statistics for a random
sample of continuous random variables from a distribution with c.d.f. F(x)
and density f(x). The joint density for the order statistics is then

n
g(x“),...,x(,,)) = pn! .Hlf(x(,-)), -0 < X(]) < e <L X(,,) < ®
=0, elsewhere. (1.22)

Proof: We provide the structure of the proof for general n, with a
detailed illustration for the specific case n=2. Define the sets A=
{(xpp.05x,)| — 00 <x; <00, x;%x; for i#j} and B={(xqy-..s x(m)| =0 <
X<+ <x(,)<oo}. The transformation defining the order statistics
maps A onto B, but not in a one-to-one fashion, since each of the n!
permutations of the observed values yields the same value for the order
statistics. Thus, for example, when n=2, (x,,x,)=(1.4,6.9) and (x,x9)=
(6.9,1.4) both yield (x;), x;))=(1.4,6.9). If we partition 4 into n! subsets,
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each one corresponding to a particular ordering of the sample observa-
tions, we see that the order statistics transformation now maps each of
these partitioned sets onto 5 in a one-to-one fashion. For illustration,
when n=2, A is partitioned into 4, and A4,, where A, = {(x},x,)| — 00 <x;,
<x,<o0} and 4,={(x,,x;)| — 00 <x,<x,<00}. On 4, the order statistics
set x;=x(, and x,=Xx,. The absolute value of the Jacobian of this
one-to-one transformation is

=t O]=

On A4, the order statistics set x, = x;, and x,=Xx,,,, yielding the Jacobian
with absolute value

e

For general n, it follows similarly that the Jacobian of each of the
one-to-one transformations from one of the n! partitions of 4 onto B has
an absolute value equal to 1: The joint density of the order statistics is then
simply the sum of the contributions from each of the partitions. Specifi-
cally, when n=2 we have

g8(xapXx@) = Axa)f x| + Axe)Axa)lsl
=2f(xi)f(x2),  —0 <xay <xg < o0.

For general n, the joint density in (1.2.2) follows from the fac: that the
contribution of each of the n! partitions is II7.., f(x,).

A special case of the joint density of the order statistics that is important
to nonparametric statistics corresponds to an underlying uniform distribu-
tion on the interval (0, 1). For this case, the joint density (1.2.2) of the order
statistics is

g(X(l),...,X(,,)) = n!, 0< X < - <L X(n) < 19
=0, elsewhere. (1.2.3)

Marginal Distributions

Although the marginal distribution of a single order statistic Xy 1<j<n,
can be obtained directly by the proper integration of (1.2. 2) (see Exercise
1.2.1), we will develop these formulas by a more indirect, but instructive,

A



1.2. Order Statistics 5

approach based on binomial probabilities. (An expression for the joint
density of two order statistics is given in Exercise 1.2.2.)

Theorem 1.24. The marginal density for the jth order statistic X,
1<j <n, under the conditions of Theorem 1.2.1 is
gj(t)=m[F(t)]J I{I—F([)] —jf(l) -0 <t < .
(1.2.5)

Proof: Let Gy(t) be the distribution function for X ;. Then, for any 1,
G(t) = P(X(;)<t) = P(atleastj Xs are <7)

n
= Y, P(exactly i Xs are <)

2 ( )[p(:)} [1-F(]"" (12.6)

since whether any particular X is <t is a Bernoulli event with probability
F(¢) and the n Bernoulli events in question are mutually independent.
From the well-known relation between binomial sums and the incomplete
beta function (see Exercise 1.2.8), we can write

n! O N '
—_— x/ 7 (1=x)""dx. 127
G, © (127)
Lettiﬁg H(-) be the c.d.f. for a beta distribution with parameters a =/ and
B=n—j+1, we have G(f)= H(F(t)). Differentiating G ()= H(F(?)) with
respect to f via the cham rule yields g;(¢)=h(F())A1), the desired expres-
-sion for the margma] density of X ;. W

G =

When computing cumulative probabilities for X, ;, we note that we can
use either cumulative binomial sums as in (1.2.6) or tables of the incom-
plete beta function in (1.2.7). Moreover, althoagh the density form in
(1.2.5) depends upon the underlying distribution ,cing continuous, the two
cumulative distribution expressions are valid .er either continuous or
discrete variables.

The Probability Integral Transformation and Uniform Order Statistics

As mentioned previously, the uniform distribution on (0, 1) plays a special
role in nonparametric statistics. This is primarily due to a result referred to
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as the probability integral transformation. For a random variable X with
c.d.f. F(x), we define the inverse distribution function F ~!(-) by

F~'(y) =inf{x|F(x)>y}, 0<y<Ll (1.2.8)

We note that if F(x) is strictly increasing between 0 and 1, then there is
only one x such that F(x)=y. In this case the infimum is unnecessary, and
F~(y)=x without ambiguity.

Suppose there is some x such that F(x)=y. Since F(-) is continuous
from the right, F(F~'(y))=y. In particular, this shows that if F(-) is
continuous, then F(F ~!(y))=y for every y satisfying 0 <y < 1. However, if
F(-) is the c.d.f. of a discrete distribution, then for a given y there may be
no x for which F(x)=y. In such cases F ~'(y) is the smallest x yielding an
F(-) value larger than y, and hence, in general, we have the relationship

y<F(F'(y)) for0<y<]l.

Theorem 1.2.9. (Probability Integral Transformation) Let X be a con-
tinuous random variable with distribution function F(x). The random variable
Y= F(X) has a uniform distribution on (0, 1).

Proof: As noted above, since F(-) is continuous, F(F ~!(y))=y for
0<y < 1. Using the monotonicity of F(-) we see that {X < F ~'(y)} implics
{F(X)<F(F~'(y))=y}. Also,

(F(X)<y} = {X<F ()} U {X >F~'(y) and F(X)=y).
The continudus distribution of X implies that P(F(X)=y)=0. Thus
P(F(X)<y) = P(X<F~\(y)).

Let H(y) be the distribution function for Y. Since Y assumes values only
in [0,1], we know that

H(y)=0, y<0
=1 y»>»L (1.2.10)

Also,

H(y) = P(Y<y) = P(F(X)<y) = P(X<F~(y))
=F(F'(y)=y, O<y<l (1.2.11)
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Using (1.2.10), (1.2.11) and the nondecreasing nature of H(-), we see that
H(y) is the distribution function for a uniform distribution on (0,1), as
desired. W

We now use this result in connection with the earlier results on order
statistics. Let X;,< - -+ <X, be the order statistics for a random sample
from a continuous distribution with c¢.d.f. F(x). Then, in view of Theorem
1.29, F(X;))< - -+ <F(X,,) are distributed as the order statistics from a
uniform distribution on (0,1). Hence the joint density of Vi=F(X),
i=1,...,n, is given in (1.2.3), and the marginal density for each v,
1< j<n, follows from (1.2.5) and has form '

n!

() =rr———— " (1=-1)"", 0<i<1
50 = G=nmon ¢
=0, elsewhere. (1.2.12)

Thus ¥} has the beta distribution with parameters a=/ and 8=n—,+1.
The moments for this beta distribution are used in later chapters and are
easily calculated from (1.2.12). For any positive number r, we have

! ‘ v

EO7) = Gy -0
- n!T(r +j) f| T(n+r+1)
G-=DT(n+r+1) Jo T(r+/)(n—j)!

_ n!T(r+j)
(- DIT(n+r+1)’

A=) dt

(1.2.13)

where I'(k)=(k ~1)! whenever k is a positive integer. Thus when V;is the
Jth order statistic from a uniform distribution '

=S
(%) n+l
and - (1.2.14)

= _Jn=j+1)
verl) (n+1(n+2)"

Expected values for order statistics from distributions other than the
}lnxform are also useful in nonparametric testing procedures, but for many
Important distributions no simple expressions can be given for these
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expectations. (One notable exception is the exponential distribution—see
Exercise 1.2.7.) In particular, such an explicit formula is not available for
the normal distribution if n is larger than 3. However, because of the
importance of the expectations of order statistics from a standard normal
distribution (i.c., mean zero and variance one), these values have been
calculated via numerical integration and have been tabulated by several
people, including darter (1961).

Another important result that, in a sense, is a converse to the probability
integral transformation, is stated in the following theorem, which, unlike
Theorem 1.2.9, is valid for c.d.f’s F(-) of both discrete and continuous
random variables.

. Theorem 1.2.15. Let U be a random variable with a uniform distribution
on (0,1). Define X=F NU), where F~'(-) denotes :he inverse of the
distribution function F(x), as given in expression (1.2.8). Then X has c.d.f.
F(x).

Proof: Using the monotonicity of F(-), we see that {F~YU)<x)
implies { U< F(F ~Y(U)) < F(x)}. Also, the definition of F ~!(-) shows that
{U<F(x)} implies { F ~'¢U)<x}, and hence

P[UKF(x)] = P[F“(U) <x].
Let G(x) denote the c.d.f. of X. Then.

G(x) = P[X<x]
= P[F~(U)<x]
= P{U<F(x)] = F(x).

A random number generator on a computer produces values U,,..., U,
that are approximately independent uniform (0, 1) variates. If the c.d.f.
F(-) has an inverse function F~'(-), then F~'(U,),...,F~'(U,) will be
‘approximately distributed as independent variables with c.d.f. F(x). Note
also that F~Y(Ug),...,F (U, behave like the order statistics for a
sample of size n from F(-). Thus to generate order statistics from any
specific distribution, we can first generate ordered uniform variates and
then transform them using the inverse function of the population c.d.f. In
Section 1 of Chapter 4 we illustrate the use of Theorem 1.2.15 in a Monte
Carlo study of the relative performances of several test statistics.



