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PREFACE

“Numerous fields of engineering require new and, if possible, automatic
machinery as well as complicated instruments and other apparatus, the
creation of which requires not only great ingenuity, but also a thorough
knowledge of mechanical principles. In this respect, one of the foremost
and fundamental branches of engineering science is the science of kine-
matics and mechanisms, without which the creation of such devices can
hardly be attempted.”’?

These words were written in 1941, when kinematics of mechanisms was
in the doldrums, at least in the United States. Their truth was widely
recognized at the time, and today, after twenty years of vigorous research
activity, which continuously gathers momentum, kinematics of mechan-
isms has become a major discipline in its own right.

Unfortunately, though perhaps understandably, the related textbook
literature has not kept pace with the developments in the field. This
book was written in an attempt to help bridge the existing gap. Although
it is primarily intended for undergraduate courses, a substantial part of
it is of graduate standard. The prerequisites for both the graduate and
undergraduate sections are sophomore Mathematics and Mechanics.

Much of the subject matter, gathered from various engineering jour-
nals, is of recent origin, and some is based on hitherto unpublished work.
Emphasis throughout is placed on the graphical, rather than on the analy-
tical, approach, because it is the more straightforward of the two, and
yields results of an acceptable accuracy, except in those rare cases which
require rigorously exact answers.

Although, in collating the material into an integrated whole, I found
it necessary to modify nomenclature and notation, readers wishing to con-
sult the original publications should experience little difficulty on this
score,

In general, the selection of the subject matter and its presentation
reflect my educational background, professional experience, and teaching
philosophy. I should feel amply rewarded if the book succeeded in

' A. E. R. de Jonge, What is wrong with “Kinematics’’ and ‘‘Mechanisms’’?, Mech.
Eng., vol. 64, no. 4, pp. 273-278, 1942.
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vi PREFACE

awakening the interest of the students and stimulating them to further
study of this fascinating subject.

Because of the great diversity of undergraduate mechanical-engineering
courses, with their varying degrees of orientation either toward the
applied or the theoretical aspects of engineering, it is not possible to make
definite suggestions regarding a suitable allocation of place and time to
Kinematics of Mechanisms within the curriculum.

The following scheme has been adopted by the School of Mechanical
Engineering at the University of New South Wales. The topics reviewed
in Chapters 1, 2, 3, and 7 of this book are treated in the first- and second-
year courses in Mechanics (Statics and Dynamics); Chapters 4, 5, and 8
form part of the first course in Theory of Machines, given in the third
year; Chapters 6 and 9 and selected sections of Chapter 10 form part of
the second course in Theory of Machines, included in the curriculum of
the fourth (final) year of the undergraduate honors course; and the bal-
ance of Chapter 10 and Chapters 11, 12, and 13 form the graduate subject
Advanced Kinematics of Mechanisms. The time allocations (lectures
plus practical work) for the topics mentioned are 40 hours in the third and
fourth years and 90 hours for the graduate course.

I wish to express my sincere thanks to the Editorial Staffs of the
American Society of Mechanical Engineers, the Institution of Mechanical
Engineers, Machine Design, and Product Engineering for permission to
draw upon material published in their respective journals; to Professor
A. 8. Hall, Jr., of Purdue University and to Professor F. Freudenstein of
Columbia University for the generous loan of their lecture notes; and to
my friends Professors F. W. Ocvirk and R. M. Phelan of Cornell Univer-
sity for their support and encouragement in the early stages of the project.

J. Hirschhorn



Preface

CONTENTS

Introduction .
Engineering System of Umts

Chapter 1. Fundamentals of Vector Analysis

1-1.
1-2.
1-3.
1-4.
1-5.
1-6.
1-7.
1-8.

Scalars and Vectors. .
Vector Notation; Unit Vector Representatlon of Vectors,
Composition, Subtraction, and Resolution of Vectors .
Multiplication of a Vector by a Pure Number or a Scalar.
The Vectorial, or “Cross,’”’ Product of Two Vectors

The Scalar, or “Dot,” Product of Two Vectors.
Differentiation of a Vector with Respect to Time .
Problems.

Chapter 2. Kinematics of the Plane Motion of a Particle .

2-1.
2-2.
2-3.
2-4,
2-5.
2-6.
2-7.
2-8.
2-9.

2-10.

Definitions

Cartesian Reference Frame

Polar Reference Frame.

Moving Reference Frame .

Summary. .

The Radius of Curvature .

Graphic Differentiation and Integratlon
Method of Finite Differences .

Absolute and Relative Motion; Relatlve Motlon of Separate Partlcles .

Problems.

Chapter 3. Kinematics of the Plane Motion of a Rigid Body.

3-1.
3-2.
3-3.
3-4.
3-5.

3-6

Definitions and Basic Concepts

Types of Plane Motion. .

The Velocity Pole, or Instant Center of Rotatlon .
Determination of Velocities by Means of the Velocity Pole

Determination of Velocities by Means of Orthogonal Velocity Vectors .
. Polodes
3-7.
3-8.
3-9.
3-10.
3-11.
3-12.

Relative Motron of Physrcallv Connected Pn.rtlcles

General Motion as Superposition of Translation and Rotatlon

The Velocity Image.

The Acceleration Image .

Graphical Solution of the Ve!oclty and Acceleratlon Equatrons .

The Acceleration Pole, or Instantaneous Center of Accelerations.
vii

[

30

32
34
35
38
38
40
43
44
44
46
47
49



viii
3-13.

3-14.
3-15.

CONTENTS

Acceleration of the Velocity Pole P, . .
Acceleration of the Center of Curvature of the Movmg Polode .

Problems .

Chapter 4. Kinematics of Simple Mechanisms

4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
4-10.
4-11.
4-12.
4-13.

4-14.

Definitions -

Degree of Freedom of a Mechamsm .

Inversions of a Linkage.

Relative Motion of Two Planes; the Relatwe-veloclty Pole

Relative Motion of Three Planes; Kennedy’s Theorem

Velocity Poles in Mechanisms.

Velocity Analysis of Mechanisms by Means of Veloclty Poles

Velocity Analysis of Mechanisms by Means of Orthogonal Velocities
Velocity Analysis of Mechanisms by Means of Relative Velocities
Comparison of the Three Methods of Velocity Analysis

Acceleration Analysis of Mechanisms by Means of Relative Acceleratlons
Analysis of Mechanisms with Rolling Pairs . . .

Analysis of Mechanisms with Sliding and Shp-rollmg Palrs in Motzon'
Coriolis Component . e oL L.
Problems.

Chapter 5. Kinematics of the Slider-crank Mechanism

5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.

5-8.

5-9

Nomenclature and Conventions

Conventional Velocity and Acceleration Dlagrams

Simplified Construction of the Velocity Diagram

Klein’s Construction of the Acceleration Polygon .

Ritterhaus’s Construction of the Acceleration Polygon

Harmonic Analysis of the Slider Acceleration of In-line Mechamsms
Approximate Expressions for the Slider Displacement, Velocity, and
Acceleration in In-line Mechanisms . .

Graphical Determination of the Slider Dlsplacement .

. The Acceleration-Displacement Curve
5-10.

Problems.

Chapter 6. Kinematics of Complex Mechanisms

6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.

Complex Mechanisms; Low and High Degree of Complexlty
Goodman’s Indirect Acceleration Analysis .

Method of Normal Accelerations .

Hall’s and Ault’s Aux1hary—pomt Method

Carter’s Method. . o

Comparison of Methods

Problems.

Chapter 7. Fundamental Principles of Dynamics and Statics.

7-1.
7-2.
-3
7-4.
7-5.
7-6.
7-7.

Dynamies of a Particle; Laws of Motion.

Dynamics of the Plane Motion of a Rigid Body

Equivalent Mass Systems . .

Work, Power, Energy; Conservation of Energy, Vlrtua.l Work
D’Alembert’s Principle; Inertia Force o
Bome Simple Problems of Statics -

Friction .

94
100

106

106
107
108
109
112
113

115
116
117
119

121

121
122
131
133
140
141
142

145

145
146
152
156
160
162
165



CONTENTS

Chapter 8. Forces in Mechanisms .

&1.
8-2.
8-3.
8-4.
. Forces in Nonsymmetrical Linkages .
8-6.
8-7.
8-8.

8-5

Introduction.

Free-body Diagrams
Tllustrative Examples . .
Friction in Link Connections .

Stress Determination in Moving Members .
Gyroscopic Effects .
Problems.

Chapter 9. Dynamic Motion Analysis

9-1.
. The Energy-distribution Method .
9-3.
9-4.
9-5.
9-6.
9-7.

9-2

Nomenclature and Conventions

The Equivalent-mass-and-force Method .
The Rate-of-change-of-energy Method
Effects of Friction . ..
Summary and Conclusxons

Problems.

Chapter 10. Advanced Kinematics of the Plane Motion

10-1.
10-2.
10-3.
10-4.
10-5.
10-6.
10-7.
10-8.
10-9.

10-10.

10-11.
10-12.
10-13.

The Inflection Circle; Euler-Savary Equation .

Analytical and Graphical Determination of d; .

Bobiilier’s Construction; Collineation Axis .

Hartmann's Constructlon .

The Inflection Circle for the Relatlve Motlon of Two Movmg Planes
Application of the Inflection Circle to Kinematic Analysis .

Polode Curvature (General Case). . .

Polode Curvature (Special Case); Hall's Equatlon .

Polode Curvature in the Four-bar Mechanism; Coupler Motlon .
Polode Curvature in the Four-bar Mechamsm Relative Motion of the
OGutput and Input Links; Determination of the Qutput Angular Accelera-
tion and Its Rate of Change . .
Freudenstein’s Collineation-axis Theorem Carter Hall Clrcle

The Circling-point Curve (General Case)

The Cireling-point Curve for the Coupler of a Four-bar Mechamsm

Chapter 11. Introduction to Synthesis; Graphical Methods

11-1.
11-2.
11-3.
11-4.
11-5.
11-6.
11-7.
11-8.
11-9.
11-10.
11-11.
11-12.

The Four-bar Linkage . .

Guiding a Body through Two D1st1nct Posxtlons

Guiding a Body through Three Distinct Positions .

The Rotocenter Triangle

Guiding a Body through Four Dlstmct Posmons Burmester 8 Curve
Function Generation; General Discussion

Function Generation; Relative-rotocenter Method

Function Generation; Reduction of Point Positions

Function Generation; Overlay Method .

Function Generation; Velocity-pole Method .

Path Generation; Hrones s and Nelson’s Motion Atlas

Path Generation; Reduction of Pomt Positions (Fixed Pivot Comcldent
with Rotocenter)

ix

167

167
167
168
181
184
188
190
193

199

199
200
205
207
209
213
214

217

217
222
224
225
232
233
235
239
241

243
245
248
251

254

254
262
266
267
277
281
284
289
295

304

305



X CONTENTS

11-13. Path Generation; Reduction of Point Positions (Moving Hinge Coinci-

dent with Rotocenter) . - 41
11-14. Path Generation; Roberts’s Theorem e 1
Chapter 12. Introduction to Synthesis; Analytical Methods . . 319
12-1. Function Generation; Freudenstein’s Equation. . . . . . . . 319
12-2. Function Generation; Precision-point Approximation . . . . . . 321
12-3. Function Generation; Precision-derivative Approximation . . . . 322
12-4. Path Generation. . . 323
12-5. Synthesis of Four-bar Mechamsms for Speclﬁed Instantaneous Condl-
tions; Method of Components. . . 324
12-6. Synthesis of Four-bar Mechanisms for Prescrlbed Extreme Values of the
Angular Velocity of the Driven Link; Method of Components . ., . 330
Chapter 13. Introduction to Synthesis; Grapho-analytical
Methods . . . . . . . . . . . . . 383
13-1. Function Generation; Precision-derivative Approximation . . 336

13-2. Function Generation; Precision-point and Precision-derivative Method 344
13-3. Path Generation; Coupler Curves with Approximately Circular Elements 346
13-4. Path Generatlon Symmetrical Coupler Curves with Approximately

Straight Elements .o 349

13-5. Path Generation; Coupler Curves thh Extended Rectlhnear Portlons
Ball’s Point . . . . . . . . . . . . . . . . . . 35
Bibliography - o1

Inde.z:361



INTRODUCTION

The design of a new machine or device for the performance of an opera-
tion, or sequence of operations, associated with some particular industrial
process, usually involves the following steps:

1. An assessment of the problem

2. A conception of a suitable mechanism in its skeletal form

3. A kinematic analysis, or examination of the mechanism’s motion
characteristies from a purely geometrical point of view, which may reveal
the need for a modification of the layout

4. A static analysis, or determination of the nature and magnitude of
the forces associated with the primary function of the device

5. A choice of suitable materials of construction, based on technological
and economic considerations, and atentative proportioning of the members

6. A dynamic analysis, or determination of the inertia forces and their
effects on safety and operational requirements, which may disclose the
need for redesign

The chief purpose of this book isto provide the student with the
proper tools for carrying out steps 3, 4, and 6 and to give him a basis
for a rational approach to some problems of synthesis. It is also hoped
that the book will prove a useful source of reference to the practicing
engineer.

Before proceeding to the detailed investigation of the kinematic and
dynamic behavior of mechanisms, it will be necessary to select a suitable
and consistent system of units and it will be advisable to review some
fundamental notions, usually discussed in basic courses in mathematics,
physics, or general mechanics.

Because the concept of force is of more immediate interest to the
engineer than that of mass, force is chosen as one of the three fundamental
quantities in the engineering or gravitational system of units, the other
two being displacement and time. The fundamental units of measure
adopted in this book are, respectively, the pound (Ib), the inch (in.), and
the second (sec). The reasons for selecting the inch, rather than the foot,
as unit of displacement are threefold:

1. Relative displacements of machine parts are generally of the order
of a few inches, and sometimes amount to only fractions of an inch.

1



2 KINEMATICS AND DYNAMICS OF PLANE MECHANISMS

2. Dimensions of machine elements are usually given in inches.

3. Quantities used in the analysis of stress and strain are based on the
inch, e.g., modulus of elasticity (Ib/in.?) and moment of inertia of cross
section (in.4). The accompanying tablelists the most important quantities
and their units of measure.

ENGINEERING SysTeEm oF UNnrrs

Quantity Symbol Unit
Displacement.............. .. .. . s, T in.
Time..................... .. ... T . | sec
Forece........................ .. F, R b
Velocity, speed.............. .. | 9,8 & |in./sec
Acceleration.......... .. ... . . .. a, §, £ |in./sec?
Angular displacement........ ... .| 6, ¢ rad
Angular velocity. .. ..... .. . w rad/sec
Angular acceleration....... .. .. a rad /sec?
Mass.................... ... ... M Ib-sec?/in.
Linear momentum.......... ... | = Ib-sec
Torque... ............... .. .. . . T 1in.-lbt
Moment of inertia........ . ... .| I ‘1b-in.-sec?
Angular momentum...... .. .. . . g in.-lb-gec
Work....................... .. w lIb-in.t
Energy. .......... ... ... .. ... 13 Ib-in.
Power........ .. ... . ... .. .. ® Ib-in./sec

t The reasons for choosing the in.-lb as unit of torque and the Ib-in. as unit of work
are given in Secs. 1-4 and 1-5.



CHAPTER 1

FUNDAMENTALS OF VECTOR ANALYSIS

1-1. Scalars and Vectors

Physical quantities are divided into scalars and wvectors. Scalars,
examples of which are mass, time, and work, are completely defined by
magnitude and units of measure. Vectors, such as force, veloeity, and
acceleration, require, in addition, the specification of direction.

Provided that the physical nature of vector quantities is kept in mind,
vector analysis, or mathematical manipulation of vectors, becomes a
powerful tool in the investigation of many physical phenomena and helps
greatly in their proper understanding.

1-2. Vector Notation; Unit Vector; Representation of Vectors

Vector Notation. Vector quantities will be denoted by bold-faced sym-
bols; their magnitudes, and scalar quantities in general, will be designated
by italics:

F, F;r, r;v, v;etc.

Unit Vector. A very useful concept in vector analysis is the unit vector,
a directed element of length one, having no physical units. It will be
denoted by the symbol i with an appropriate lower-case suffix:

i, denotes a unit vector in the direction s

Representation of Vectors. A vector quantity is depicted conveniently
by a directed line segment, or arrow, of a length representing, to some
suitable scale, the actual magnitude. In the case of translative or lineal
vectors, such as force or velocity, the line vector is drawn parallel to the
line of action of the quantity considered and pointing in its direction.
In depicting rotational vectors, such as torque or angular velocity, the
~ line vector is usually! drawn parallel to the axis around which the action
takes place, pointing in the direction in which a right-hand screw would

! When dealing with the balancing of rotating and reciprocating masses, a different
convention is adopted.

3



4 KINEMATICS AND DYNAMICS- OF PLANE MECHANISMS

advance if turned in the sense of the particular quantity. In the special
case of a two-dimensional system, the simple device of a curved arrow is

~Plane of action

pd L

Lineal vector Rotational vector

Sense of action

Fia. 1-1

frequently used to indicate the sense as clockwise (cw) or counterclock-
wise (cew), and the magnitude is stated separately.

1-3. Composition, Subtraction, and Resolution of Vectors

Resultant. By definition, the resultant of a vector system is a vector
obtained by the process of composition, or geometrical addition.

Parallelogram Method of Composition. The resultant s of two vectors
a and b is constructed by setting off the vectors from a common origin, or
pole, and then completing the parallelogram, as shown in Fig. 1-2. The
"diagonal which originates at the pole represents the resultant in magni-
tude and direction.

Fia. 1-2

The construction may be extended progressively to any number of
vectors. In Fig. 1-3, the resultant s of a, b, and ¢ is found by first con-
structing the resultant s’ of a and b and then combining it with c.

Polygon Method of Composition. Examination of Fig. 1-3 reveals that
* the same resylt would be obtained by arranging the individual vectors
“in order,” i.e., tail to tip, and then joining the initial point, or tail, of
the first vector with terminal point, or tip, of the last vector. Further-
more, it is evident that the sequence in which the vectors are taken has
no effect on the result; i.e., the commutative law is valid in the geometri-
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Fia. 1-3

cal addition of vectors, just as it is in the algebraic addition of scalars:

a+b+c=D>b+a+c, ete

Fig. 14

Free, Sliding, and Fixed Vectors. It is important to realize that,
although in the mathematieal sense two vectors are considered equal if
they have the same magnitude and direction, they may produce, or be the
result of, different physical effects. (For instance, two equal parallel
forces applied in turn to a given rigid body would produce the same
acceleration of its center of gravity but different angular accelerations.)
For this reason, three types of vector are distinguished in mechanics,
viz., the free, the sliding, and the fixed. A free vector is tied neither to a
specific point of application nor to a particular line of action. The
velocity and acceleration of a rigid body in translation are examples of
free vectors, because in this type of motion all particles have the same
motion characteristics. A sliding vector is tied only to a specific line of
action. The dynamic effect of a force acting on a body is not affected by
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a displacement of the force along its line of action. Hence, in dynamics,
forces are regarded as sliding vectors. Another example of a sliding
vector is the following. In a rigid body the distances between the par-
ticles do not change. Consequently, collinear particles of such a body
have the same velocity component in the direction of the line containing
them. Thus this velocity component is a sliding vector. A
fized vector is tied to a particular point of application. The
F, velocity of a specific point or particle is an example of a fixed
vector. A second example is illustrated in Fig. 1-5.
' Although F, and F, are equal and act along the same line,
their static effects differ: F, causes compression of the upper
part of the pin, while F, produces tensile stresses in the portion
below the collar. Hence, if the distribution of direct stresses
due to a given force is to be investigated, the force must be
Fic. 1-5 regarded as a fixed vector.

Position of the Resultant of Concurrent Vectors. The
resultant of a system of concurrent vectors passes through the common
point of intersection.

Position of the Resultant of Coplanar Nonconcurrent Vectors. The
resultant of a system of coplanar nonconcurrent vectors has physical
significance only if the vectors concerned are forces or momenta. As
indicated in Fig. 1-3, its line of action may be found by a gradual addition
of the sliding component vectors. Alternatively, the line of action may
be determined from the condition that the torque of the resultant about
any point in the plane is equal to the algebraic sum of the torques of the
component vectors with respect to the same reference point. Experience
shows that the effect of the resultant is equal to the combined effect of the
original system. For instance, a body in motion under the action of a
two-dimensional force system will acquire a definite acceleration of its
center of gravity and a definite angular acceleration. Identical dynamic
effects would also be produced by a single force, equal to the resultant.
applied along the proper line of action.

Subtraction of Vectors. The subtraction of a vector is equivalent to
the addition of its negative, i.e., of a vector having the same magnitude
but opposite direction:

¥z

d=a—b=a+ (~b)

Resolution of Vectors. The individual vectors which together form the
resultant are called its components. Resolution of a given vector is the
process of finding its components in specified directions.

A vector can be resolved uniquely into only two related components.
If more than two directions are prescribed, the number of possible com-
binations of components becomes infinite.
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In determining the components, the procedure of the parallelogram
method is reversed, as shown in Fig. 1-6.

Direction n

Direction a

Direction ¢

Direction b

Fig. 1-6 Fia. 1-7

Of great practical importance are mutually perpendicular components,
or projections, of a vector. Projections will be denoted by the same letter
as the vector, with appropriate lower-case suffixes, as shown in Fig. 1-7.

Occasionally, as in the kinematic analysis of complex mechanisms, a
vector may be specified by two projections in independent directions.
The corresponding construction of the vector is shown in Fig. 1-8. The
difference between it and the ordinary composition should be noted
carefully.

Direction p

Direction !

8

Fia. 1-8

Analytical Composition of Vectors. The vectors are referred to a
cartesian system of coordinates, and their components in the z and y
directions are calculated as shown in general terms for the vector q:

g: = g cos 4, and gy = g sin 6, (1-1)

The components s, and s, of the resultant are computed by adding alge-
braically the corresponding component projections:

8, = Zq, and sy = Zgq, (1-2)
The magnitude of the resultant is given by

s = (8.2 + g, )} (1-3)
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and its directional angle is calculated from

tan §, = (1-4)

82
In order to obtain the correct algebraic signs of the components, the
directional angles are measured in the counterclockwise sense from the
positive z axis, as indicated in Fig. 1-9.

b +y
Yy
+y sy }B
» b
9r eb a e 0
6, \
o’ +x O;, +x

Fic. 1-9

1-4. Multiplication of a Vector by a Pure Number or a Scalar

From a formalistic point of view the product Ma is a vector which has
the same direction as a and a magnitude M times as great, irrespective of
whether M is a pure number or a scalar. From the physical point of view,
however, there is a considerable difference in the nature of the two result-
ing vectors, because a pure number does not change the physical character
of the original vector, while a sealar quantity does: if, in the product
A = Ma, M is a pure number and a an acceleration, then A is also an
acceleration; if, however, M represents mass, then A becomes a force.

It follows, therefore, that a vector quantity may be expressed as the
product of its magnitude (a scalar) and the appropriate unit vector; e.g.,

q = mi,

signifying that the vector q has a magnitude m and acts in the direction .
(It is not necessary to denote the magnitude and direction by the same
letter as the vector itself.)

1-6. The Vectorial, or “Cross,” Product of Two Vectors

The vectorial produet of a and b, denoted by a x b, is defined as a
rotational vector of magnitude (ab sin 6,), normal to the plane of a and



