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Preface

The rapid and efficient physical processes that lasers are capable of
performing have already resulted in a steady increase since the early 1970s
in applications on various production lines worldwide. These include
machining, welding and alloying, surface hardening, insulation stripping,
and impurity or defect gettering. It is the novel and unique processing
characteristics presented by lasers that give rise to operating conditions
never previously available, and thus the great variety of applications.

Lasers, and more generally lamps, can also give rise to a myriad of
chemical reaction steps. The nature of light is such that the discrete quanta
associated with particular emissions can selectively drive a key step in the
reaction ladder leading to some surface modification or material removal,
or to the formation of a thin film. The radiation can also be transformed
into heat and drive a range of thermally controlled phenomena. These
regimes of photochemical processing of electronic materials, have histori-
cally been largely unexplored, and only within the last decade have they
begun to attract sizeable worldwide interest. The burgeoning of the field
has been most evident at international level during events organized under
the auspices of the Materials Research Society (MRS) and the European
EMRS-—societies whose remit is to foster and encourage interdisciplinary
science.

It is intended that this new volume complement and update the existing
work already published in this field. In this respect, the main concepts and
basic principles are restricted to one introductory chapter. The following 17
chapters tackle specific and specialized areas of research that are currently
being studied on a worldwide scale. This book contains reviews on UV lens
design, laser lithography with respect to other lithographic techniques,
photo-nucleation, excimer laser development, incoherent lamp appli-
cations, and in situ laser characterization; topics that have not been
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reviewed or assessed before in such detail. Together with articles on precur-
sors for direct writing, laser ablation (of polymers and of superconduc-
tors), laser doping, etching, deposition and growth, it is hoped that this is
a valuable and unique contribution to the field. It is aimed not only at both
active and new researchers in the area, but also at those who feel they could
be potential users of the technology.

This volume evolved from the Sth UK Photochemical Processing Work-
shop, a three-day meeting held at University College London (UCL) that
was strongly supported by the EMRS/EEC Network on Laser Chemistry.
The workshop was co-sponsored by several other learned societies, namely
the British Association of Crystal Growth, the Institute of Physics, the
Institution of Electrical Engineering, and the Royal Society of Chemistry.
It additionally benefited from support from the EEC/Science programme
on Photoprocessing of GaAs, the European Office of the United States Air
Force, and several industries, whose inspiration and generosity is gratefully
acknowledged.

The editors would like to take this opportunity to thank many people
who have assisted, not only towards this volume, but also in the develop-
ment of understanding in the field over the years. In particular, we are
grateful to the authors of the chapters for delivering their erudite contri-
butions (essentially) on time! Very special thanks go to our closest
colleagues in the laboratory at UCL, F. Beech, B. Bradley, T. Kerr,
P. Patel and G. Tyrrell, without whose help this project would have
floundered at the first hurdle.

Finally, we should both like to take this opportunity to admit our
indebtedness to our wives and families, who have so patiently tolerated the
eccentricities of the British academic over the past years.

Ian W. Boyd
Richard B. Jackman

University College London
July 1991
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1 Photochemical Processing:
Fundamental Mechanisms
and Operating Criteria

IAN W. BOYD

Department of Electronic and Electrical Engineering,
University College London, UK

1.1 INTRODUCTION

Photo-induced chemical reactions are not only central to everyday events
such as photography, photocopying, polymer degradation and the
bleaching of dyes, but they also play a vital role in the life support system
of the planet. For example, virtually all forms of life are either directly or
indirectly dependent upon the photosynthesis of organic compounds from
CO; and H>O by

CO; + 2H>0 — [CH;0] + H20 + O2 (1.1

as it is instrumental in initiating the growth of vegetation and producing the
O; that makes up our atmosphere.

While such reactions must occur in the neighbourhood of light-absorbing
pigments such as chlorophyll, many other photoreactions in nature do not
require intermediaries to host the event. For example, O, within our atmos-
phere also plays a vital role in shielding us from harmful ultraviolet (UV)
radiation from the sun through the following photo-induced reactions:

0O+UV-0*+e” (1.2)
0,+UV—-0j +e” (1.3)
0;+UV—-0,+0 (1.4)

Nitrogen ions, atoms and molecules similarly undergo a range of photon
interactions, by themselves, and also in conjunction with various forms of

oxygen.
In reality, a myriad of photo-induced chemical reactions can be initiated,
either in the gas phase or within a host solid or liquid. Several of these have

Photochemical Processing of Elcctronic Materials Copyright © 1992 Academic Press Limited
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2 I. W. Boyd

been studied for centuries, while most have only received attention since
various intense artificial sources of light have become accessible. The
availability of flash lamps not only enables new chemical reactions to be
induced, but also allows reaction kinetics to be studied on timescales much
less than a second.

The advent of the laser has stretched the list of photo-induced reactions
considerably. The range of wavelengths and intensities now available have
allowed access not only to new reactions but also to completely new non-
linear reaction mechanisms as well as unexplored fields of study. Reaction
events down to tens of femtoseconds (I fs=10"'"s) can at present be
chronicled using laser pulses.

While the vast majority of pioneering studies were performed within the
gas phase, around the beginning of the 1980s the use of photons to stimu-
late reactions that formed thin film layers or delineated patterns on solids
began to attract considerable attention [1—-4]. Over the past decade, the
field has burgeoned and currently sustains several international conferences
and workshops each year. Interest in the subject can be found in a wide
variety of disciplines, the basic sciences of chemistry and physics, the
applied areas of materials and engineering, and the fundamental areas of
surface science and quantum clectronics. The potential applications are
diverse, as the content of this volume testifies.

In this chapter, the reader will be introduced to the basic concepts behind
photochemical materials processing. The photon sources used will be
described, the underlying mechanisms reviewed, and the processing
techniques discussed.

1.2 PHOTON SOURCES
1.2.1 Incoherent sources

For many photo-induced reactions, it is not necessary for the photons to
be coherent, i.e. in phase with each other. Nor is it necessary for them to
be monochromatic (of a single wavelength). In these instances, photons
from a variety of lamps can be used. Such sources may be resistively heated
wires (as in a light bulb) or gas discharges (as in a sodium vapour street
light). By electrically exciting specific gases or vapours, a range of charac-
teristic discharge spectra can be produced.

Where large continuous powers are desirable, such as for photothermal
reactions, current-heated tungsten filaments are commonly used. Arranged
in banks, these can produce a steady output at levels approaching 100 kW in
a continuum stretching from the near-UV through the visible, peaking in
the near-infrared (IR) and falling off into the IR. Indeed, the spectrum is
close to that expected from a high-temperature black body. Unavoidable
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but gradual evaporation of tungsten atoms can be reduced by adding trace
amounts of iodine, which also helps to improve the UV output.

Equally powerful light containing more UV can be acquired from arc
lamps, where a gas, or mixture of gases, at medium pressures
(450—1500 Torr) is subjected to a large electrical discharge from a capacitor
bank. Often, the discharge has to be initiated by pre-ionizing the gas with
a very high voltage “trigger”. The light emitted in this case is more charac-
teristic of energy levels available to the ions and atoms of the discharged
species. Hg-based vapours are the most widely used, and the greatest
emitted intensity usually appears at 365 nm (at efficiencies of up to 6%)
along with subsidiary peaks around 300 and 313 nm. Possible lower wave-
lengths are masked because of self-absorption at these pressures. Such
lamps are available commercially at ratings up to 60 kW over several metre
column lengths. Higher photon fluxes can be achieved by high-pressure
(up to 100 kTorr) short arc lamps. Several kilowatts can be obtained from
arc lengths of only centimetres, although the spectrum at these pressures is
characterized by only minor features superimposed upon a broad con-
tinuum, Hg/Xe mixtures give more spectral detail, especially in the UV; a
typical spectrum is shown in Fig. 1.1. Efficiencies even of the strongest
lines, however, are no more than 1-2% at best.

Low-pressure lamps (several torr and less) are among the most often
used sources today for high-intensity UV light. At these pressures, under
a high-voltage discharge, Hg can emit several distinct wavelengths pre-
viously self-absorbed. These characteristic lines arise from different atomic
transitions:

3P, — 1Sy + 253.4 nm, (1.4)
'P, > 1S5+ 184.9 nm (1.5)

and appear at power ratios of about 7:1 for the longer to shorter wave-
lengths. Under optimum conditions, they can be up to 80% efficient in their
conversion of electrical to optical energy. If one retains low-pressure oper-
ation, but increases the discharge current to more than 1 A cm™?, the two
characteristic lines saturate, and another line, previously weaker, at
194.2 nm becomes dominant and continues to increase up to current den-
sities beyond 20 A cm~2. A 1.4 kW Magnetron system can heat Ar atoms,
which vaporize Hg to a pressure of 1-2 atm and produce, at efficiencies of
greater than 9%, more than 100 W of UV light in each of the 200—260 nm
and 260—400 nm regions, as well as 225 W between 400 and 700 nm [5].

Incoherent sources of high intensity deep UV light (<180 nm) are not
currently readily available. Hydrogen, deuterium (D) and noble gas lamps
emit in this region only at modest levels, where, at pressures of less than
2 Torr, several discrete spectral lines can be obtained preferentially over the



