DECISION TABLES
AND COMPUTER
PROGRANMMING

R.WELLAND

DECISION TABLES
AND COVIPUTER
PROGRAMMING

R.WELLAND

Department of Computer Science

Strathclyde University
Glasgow UK

Heyden & Son Ltd., Spectrum House, Hillview Gardens, London NW4 2JQ, UK
Heyden & Son Inc., 247 South 41st Street, Philadelphia, PA 19104, USA
Heyden & Son Gmbl'l Devesbiirgstrase 6, _4440 Rheine, West Germany

British Library Cataloguing in Publication Data
W“d R. Decmon,tabhl.d computer programming.
Programming

001.64°25 _ QA766
ISBN 0-85501.708-2

" ©Heyden & Son Ltd, 1981
All Rightp Reserved. No part of this publication inay be reproduced, stased in 8 retrioval system o transmitted, in

any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior
permission of the copyright holder.

* Printed in Great Britain by St Edmundsbury Press, Bury St Edmunds

PREFACE

I was originally asked, several years ago, to write a book
about decision tables aimed at scientists and engineers, the
object being to show how decision t'ables might be applied to
problems in these fields. One of the difficulties of producing
a book to satisfy this original aim has been the Lack of
ixisting applications in sciance and engineering, or more
correctly Literature describing such applications. Therefore
this book reviews the basic theory of deciston tableg, including
methods for translating them into programs, in the hope that
scientists and engineers will find the applicot,‘!ons!

There are a number of texts on decision tables which desl
with the role of decision tables in the commercial data
processing environment, these are referenced in the text, where
appropriate. These books tend to concentrate on the use of
decision tables as a specification tool in systems analysis and
design, while this book is aimed at the algorithmic use of
decision tables. ’

The content of the book falls into three major sections:
ichapters 1-3 form a review of the basic theory of decision
vtnbles; chapters 4-6 deal with algorithms for the automatic
granslation of decision tables into programs; and chapter 7°
-\.i""u.{;ibes some applications of decision tables.

vil

vili PREFACE

I would Like to thank all the people who have contributed
to this book by discussing particular points with me and
providing material. These include Professor P.J.H. King and
Mrs. J. Hercer of Birkbeck College London, Gordon Davies of
University College London and Mr. A. Black of the NCC. I would
also Llike to thank my colleague John Patterson for allowing me
to describe his application of decision tables to finite state
automata.

Two other colleagues have assisted in the produg$fon of
this book: Zdrav Podolski, who provided technical support, and
John Jeacocke, who spent a Lot of time studying the drafts of
the book and making constructive comments about the contents and
my English! Finally I should like to record my thanks to Mr.
L.C. Thomas, the series editor, for his very helpful comments
about the genergl style of the book.

University of Glasgow Ray Welland
December 1980

CONTENTS

Preface
1 BASIC PRINCIPLES

1.1 The basic components of a decision table

1.2 Fundamental theory

1.3 Extending the table format

1.4 Relationship of decision tables to other logical notations
1.5 Ambiguity in decision rules

1.6 Interpreting the meaning of decision tables

1.7 Bibliography

2 CONSTRUCTION AND TRANSLATION TO PROGRAMS

2.1 Construction of decision tables
2.2 Converting decision tables into programs: the switch method
2.3 Conversion to programs: bifurcation
2.4 Conversion to programs: optimization
24.1 Minimizing the number of nodes in the tree
2.4.2 Minimizing the expected execution time of the generated program
2.5 Bibliography

3 AUTOMATED PROCESSING-OF DECISION TABLES

3.1 The traditional approach to decision tables

3.2 The effect of implied condition entries on checking
33 Bifurcating tables with related conditions

3.4 The testability of conditions

3.5 Aninteractive decision table developer

3.6 Bibliography

4 CONSTRUCTING A DECISION TREE

41 Pollack’s original algorithms
4.1.1 Algorithm 1 - Storage space minimization
4.1.2 Algorithm 2 - Execution time minimization
4.1.3 The optimality of Pollack’s algorithms
4.2 Information theory applied to decision tables
4.2.1 Shwayder’s algorithms
4.2.2 Ganapathy & Rajaraman’s algorithm
4.23 Summary of the information theory approach
4.3 Verhelst's slgorithms
4.4 Bibliography

S SEARCHING FOR A BETTER DECISION TREE

5.1 Searching for the optimal tree
5.1:1 Reinwald & Soland’s algorithms
_.5.1.2 Schumacher & Sevcik’s algorithm
5.1.3 Summary of searching algorithms
" 5.2 Code optimization
5.3 “Bibliography

113
116

116
117
119
126
126
131

CONTENTS

6 INTERPRETIVE TECHNIQUES 133
6.1 The basic rule mask technique 133

6.2 The interrupted rule mask technique 137
6.2.1 King’s interrupted rule mask algorithm 138

6.2.2 Optimal testing sequences 145

6.3 Other formulations of the rule mask technique 148

6.4 Rule mask methods for extended entries 152

6.5 A mixed number method - 160

6.6 Bibliography 163

7 LANGUAGES AND APPLICATIONS 165
7.1 A simple programming language based on decision tables 166
7.1.1 General structure of FTL6 167

7.1.2 Condition stubs and entries 169

7.1.3 Actions and table linkage 170

7.2 Decision tables in process control 174
7.2.1 Logic diagrams to decision tables 175

7.2.2 Algorithms for implementing set operations 180

73 Finite state automata into flowcharts 184

7.4 Bibliography 192

8 CONCLUSIONS 194
8.1 Ambiguity 194

8.2 Optimization 195

83 Future developraents 198

8.4 Bibliography 199

Subject Index 201

Chapter 1

BASIC PRINCIPLES

A decision table is a symbolic way of representing the
Logical interdependence between events and is one of a number of
such techniques, which include narrative form (reports),
flowcharts, Karnaugh maps and boolean algebra. The wuse of
decision tables has been widely discussed and among the
advantages claimed for their use have been:- .

(i) the Llogic is stated explicitly and precisely in a

compact form, .

(ii) a table can be checked for .omissions -3and Llogical

inconsistencies,

(i1i) a table can be modified easily to reflect a change of

circumstances,]

(iv) it is possible to "automate” the prbcessiof producing

a program from a given decision table, o

(v) the table is useful as a documentation aid,

(vi) the format of most tables is comprehensible to the

non-computer specialist. .

Before detailing the actual structure of a decision table,
it is worth considering these claims briefly and relating the
use of the tabular format to the two main forms of expression
used in computing: the narrative and the flowchart. Theré are
two main weaknesses of the narrative form when expressing
complex Llogic, these are precision and relevance. It s very

2 DECISION TABLES

difficult to specify the rutes for a particular situation
precisely, in English, and when reading a report it is often
difficult to locate and extract the relevant facts. This type of
specificatitn problem arises frequently every day, tor example
when a government department attempts to describe, for the
benefit of the general public, precisely what is meant by a
particular piece of Legislation!

‘A flowchart is a. much better way of defining problem Loaic
than narrative but there are two ways in which it also fails,
namely its serial nature and the inability to check it
thoroughly. To understand the meaning of a flowchart it must be
followed through step by step (box by box) j.e..serially and for
even a small number of Lloaical combinations it can become very
unwieldy; the isolation of one logical combination of events may
be spread over several pages of flowchart. Another drawback of
the flowchart, associated with its serial nature, occurs when it
is used as a'progranning, rather than an analysis or desian,
tool. It #s not purely a representation of problem Logic but
also implies the structure of the program to be generated, thus
an.attempt is being made to solve two problems in one step. The
second area of failure of the flowchart is the difficulty of
systematic checking; in certain problem areas e,g. process
control all combinations of events must be considered and it is
quite difficult to check a flowchart for "completeness™.

The ability to modify a program rapidly can be important in
some environments, and a program automatically generated from a
decisfon table can be very flexible in this respect. In
commercial applications, particularly, the environment in which
a program is used can be changed quite rapidly by external
influences e.g. government {(egistation on taxes, and in this
situation ease of modification is an important consideration.

The documentation aspect of usiﬁq;decision tables has, in
many cases, been oversold in the past! The use of a decision’
table to specify the logic of a program does not remove the need‘
for other documentation. Similarly while decision tables are a
useful tool in problem specification they are -unlikely to
constitute a complete description of a problem, except at the

BASIC PRINCIPLES 3

lowest levels ot . refinement. Decision _tables are widely
recommended as a communications tool for the systems analyst
because of their compact and precise nature, and also because of
_their general comprehensibility. However "a great deat of work
has been carried gyt in the Llast few years on the automatic
checking of decisi§n tables and their translation into program
seaments. It is the aim of this boak @dfsvaey this area in the
hope that an appreciation of the usefulness of decision tables
as a programming tool will become more widespread.

\

1.1 The basic components of a decision~téble

The general format used for decision tables in tﬁis book
conforms to the British Standard for Decision Tablesl with the
exception of skeletal tables with formal conditions (of the form
Ci) where table names are not given unless required for (ooping

and actions are sometimes excluded.

A decision table is conventionally considered as consisting
of four quadrants, as shown in Figure 1.1. The table is dijvided
into two horizontally: the upper part being the conditions to be
evaluated and the Llower part the consequent actions. The
vertical division separates the stub from the entries, and a
column of entries is known as a rule., A simple example of a
table is shqgn fn figure 1.2. This particular table is a (imited
entry table in which condition entries are restricted to 'Y'
(yes), *N*' (no) and *-*' (don't care), and the action entries are
limited to X (perform this action) and '=' (do nothing).

Each vertical column in the entry half o% the table is
callea a rule which consists of a number of condition entries,

Condition i Condition I R |
Stub -}l . Entries | v}
eerrescsmcs}iecmmirccacec e cn e ———
——---—----o-Qf—--—--------—--—------
Action ¥ Action [L]
Stub }} Entries {.E |

Fig. 1.1

4 DECISION TABLES

Zout Il "R, R, R, R
S R Y - SR
X, =1 {1 ¥ N N -
x2 =] - Y N -
. Y“=1 || Y Y Y N
S -
- - ————————
z:=1 || x x - -
zZzx=0)| - - X X
Fig. 1.2

indicating the truth values of relevant conditions, and action
entries, indicating which actions are to be performed. fFor
example'u2 (Rule 2) in Figqure 1.2 states:

’ if X1 # 1 and x2 =1 and Y = 1 then Z := 1
and R1 statgs;v

o ifx, = 1 !22,' = 1 then Z := 1 (X, is not relevant)
Any particular set of circumstances is known as a transaction
thus X1 = 1, x2 = i, Y1 = 1 éorfesponds to the transaction

€Y,Y,Y} which satisfies the first rule of the table. The process
of deciding which actions to perform consists of evaluating the
conditions to produce a transaction vector and then comparing
this with each of the rules (condition entries only) in turn
Lookinag fo}) mafEh. when the transaction matches the Fule in
all relevant positions (i.e. ignoring dash entries) the actions
relevant to the rule are performed.

n -second example of a decision table is given in Figure
1.3, here the notation has been extended by removlng the
restriction on entries, this is an extended entry table, where

the whole condition or action is constructed by concatenatinag
the stub and entry. This simple exahple deals with the problem
of identifying the position of a point (x,y) on a two

Guads M A e MR Rs o Re e
x n >0 >0 <y <0 #0 = =0
y 1 > <y >0 <V = #U =y
- o e o e e - - - - - - - - - ————— -
mmm e m o —————— - - - P L T T, - - -
(x,y) 1] quad1 quada quad2 quad3 ax'isx axisy origin

Fia. 1.3(a)

BASIC PRINCIPLES 5

RPN R — 'Y

Fig. 1.3(b)

Exterdeazeamele el B R Tl
Wholesale customer ? A Y Y Y i N it
Order > 50 items | Y Y N Y Y N
Detivery distance || <50 >50 =~ <75 >75 - *
o ot e -
—mcec————— e ——— —rmp e ————— e m———m - —————--———
biscount = |l 15% 10% 0 10% S% 0 *
Send salesman I - - X X - -
Fig. 1.4

dimensional graph, where the quadrants are numbered as shown in
Figure 1.35(b). ALthougH fundamentally a very simple problem
this sort of logic can prove quite difficult to the beginning
programmer, especially when faced with only a simple IF
statement which compares two values, such as that used in BASIC.

Figure 1.4 shows a further example iﬁlustrating a mixed
entry table which is a decision table consisting partly of
limited entry rows and partly of extended entry rows (starred).
This table is abstracted from a commercial appgication involving
the calculation of discounts which depend upon the type of
customer, the quantity of goods ordered and the transport costs
involved in delivery.

Mixed or extended entry tables can always be converted to
limited entry tables by expanding all extended entry rows to an
equivalent set of Limited entry rpwsz. The expanded version of
the table of Figure 1.4 is shown in Figure 1.5; apart from
increasing the size of the table this expansion may cause other
problems which will be explored later. The fact that mixed and
extended entry decision tables can always be converted to
limited entry format means that most of the work carried out on

6 DECISION TABLES

R A M s B e B
Wholesale customer ? it Y Y Y H N N
Order > 50 items [} Y Y N Y Y N
Delivér§ distance < 50 11 ¥ N = - - =
Delivery distance < 75 Il = ==Y N -
B e L L L LR L EE P L L L ————
- —— - - - - e S L L L L T -
biscount ‘& 15% I x = = = = =
biscount = 10X Iy - x - x - =
biscount = 5% I - = = = x =
No.discount allowed I - = x = = X
Send salesman It - - x X = =

Fig. 1.5

the theory of decision tables has been concerned with the
manipulation of Limited entry tables. ‘

1.2 Fundamental theory

This section 1is intended to introduce some of the
fundamental concepts of rules and tables, with reference to
limfited entry decision tables. The first distinction to be drawn
is'between siﬁgle rules and complex rules. A rule which contains
onty 'y and "N* entries is a simple rule, for example Fiqure
1.6Ca). A rule containing one or more dashes is a complex rule
and can be expanded into simple rultes e.g. the complex rule of
Figure 1.6(b) can be expanded into two simple rules as shown.
The combining of two simple rules into a complex rule is known
as consolidation and can be performed when two simple rules have
only one distinct “Yy","H" pair of condition entries and exactly
the same actions.

Two rdles are said to be disjoint if they do not have any
simple rules in“common. Therefore the two complex rules shown in
Figure 1.6(c) are Hisjoint because when they are expanded the
two sets of simple rules are completely different. When two
rutes are not disjoint they are said to be overlapping.
Overtapping rules give rise to two problems: redundancy and
contradiction, sometimes collectively known as ambigwity.

An example of contradiction is shown in Figure 1.7, when

BASIC PRINCIPLES 7

Y Y. Y ¥ Y | N Y Y| ® N

Y - ==\ Y 'N N|]Y--\N N|]Y Y

] H=--/N N -} Y--/Y N| Y Y

Y Y Y Y Y | - Y Y| Y N

(a) (b) T ()

Fig. 1.6

Ca It yy Y |Y| YVY |Y]Y C,lfyvyvy
Il - Y |Y}] NN Y)Y G Il YY Ny
g Iy - Y |Y] YVY JY| N il YY VYN
¢, 11 =N Y IN] YNNI N ¢, HHYN-N
m——edt - e c e ———— e T
———t e e L B L e P T ———ttomm—me—a—
a; Il x - X Ix] x x |- - a, [l xxx -
a, || - x - -] - - {x] x ay || = x = X
ag Il x x X |x| X x |x} x ag |l x x x X

the complex rules are expanded this gives rise to six simple
rules, one of which {Y,Y,Y, N} appears twice with contradictbry
actions, dependent upon which of the complex rules it was
derived from. The solution to this problem is to reconsider the
meaning of the table and reformulate the table in an unambiguous
way, a poss{ble reformutation is shoqn 6n the right of Figure
17.7. The other possible problem is redundancy which occurs when
overlapping rules specify the same ncfion(s). This is not such
a serious problem as contradiction although most of the decision
tree algorithms, described later in this bodk; will fail 4f
there are redundant rules in the decision table being processed.
To eliminate redundancy the rules are simply redefined so that
they are disjoint, an example illustratina redundancy and its
elimination is given in Figure 1.8.

. Two more pieces of terminology which are used throughout-
this book are action sets and rule sets. It is often convenient
to think of the actions associated with a particular rule as an
; .action set and many of the examples in this book deal ~with
‘action sets rather than individual actions. In the table shown
”in Figure 1.9 the Ai represent action sets, note that action

sets are not necessarily disjoint and that more than one rule

8 DECISION TABLES

Cy Il Y Y Y [¥v] Y |Y] o1y
¢, [} = N ==\ ¥ |nN] N IN) <, Iy Y N
Cs il Yy ==/ Yy Y] Y |Y] C3 L ry
CA Il N - N OINL Y IN]| Ck Il N -
—mmtpmvmm meeccacmea- e
———tp———— m~eemeee———— ———tte——-
a, b} X X X X} x |xj a, X x
Fia. 1.8
M R R R, R R R
———mpgmmadaan@ 3 4 _3___6
C1 iy Y Y N N N
C2 [¢ N N - Y N
c3 iy - Y N Y N N
e e - - - -
v a2 o > e = e -
I Ay A, Al Ay AL Ay

Figs 1.9

may lead to the same action set. This Lleads naturally to the
concept of a rule set which is the set of rules having the same
action set. In the example of Figure 1.9 {R1,R4} form a two
menber rule set white all the other rules form single member
rule sets.

The final topic which it is appropriate to discuss here is
the problem of completeness i.e. whether all possible
combinations of conditions have been considered in a particular
table. To ascertain whether a decision table is complete two
simple formulae are required ;-

(i) A complex rule containing d dashes is equivalent to Zd
simple rules. (look back'at the examples of rule expansion)
(ii) A table having ¢ conditions 1is complete if it is
equivalent to 2° disjoint simple rules.

Applying formula (i) to the table given in Figure 1.10
indicates that it 1is equivalent to 14 simple rules and that
therefore it 1is not complete since a complete table would
contain 24 = 16 disjoint simple rules. If the table is expanded
into its 14 simple rules then the missing combinations can be
identified as {Y,N,N,N} and {N,N,Y,Y>.

BASIC PRINCIPLES 9

C, Y Y Y N N N
¢, Ity a N v - -
¢ Il - Yy N Y v N
¢, - =Yy v ~n -
B D O e T T p e
++
"

Simple Rules 4 2 1 1 2 & = 14

Fig. 1.10

1.3 Extending the table format

In this section a number of extensions to the basic
decision table format are ijllustrated and discussed. The first,
and probably oldest, of these ideas is the inclusion of a
special rule called the ELSE rule. This 1is conventionally
written as the Llast (rightmost) rule of an incomplete decision
table and defines an action set for all transactions not
satisfying the explicit rutes of the table. Figure 1.11 gives a
simple example of a table which includes an ELSE rule. It is
obvious that a table with an ELSE rute is complete since all
possible transactions Lead to a defined action set. With a table
in which all conditions are in Llimited entry format it is a
straightforward prbcess to calculate how many simple rules are
covered by the ELSE rule, the procedure can be stated as followus

i) Check that all explicitly statgd rules are disjoint
i.e. that there are no redundanciesh3r contradictions.
(i) For each explicit rule calculate the number of
equivalent simple rules (using the formula from the
previous section). Compute s, the total number of simple
rules equivalent to the explicit rules of the table.

(iii) If the table ;ontains ¢ conditions then the ELSE rule
is equivalent to 2° - s simple rules.

For the table given in Figure 1.11 it can be seen that :-

(i) Alt the explicitly stated rules are disjoint.
(ii) s =1 + 1 + 4 + 4 = 10
(iii) The ELSE rule is equivalent to 2% - 10 = 6 simple

rules,

10 DECISION TABLES

Deal-with-customer i R1 R, R3 R, |

------- SN REPEVE PSR & GO YD SR SO O
Customer is wholesaler ? Y Y Y N E
Order value exceeds £100 2 Y Y - Y L
Account balance in credit ? Y Y N - S
Del1very within U miles 2 Y N - - E
mmeeemm————- B e R e T Ty T
B et L L T T e p——
Despatch goods X X - X | -
Despatch payment reminder - - X - -
Give discount of 10 5% =~ 2% -
Send sales representative] - - - X X

Fig. 1.11

for a decision table with conditions in extended éntfy
format it is not really meaningful to define how many simple
rules are "missing" (and therefére covered by the ELSE rule)
because this involves defining the total number of outcomes for
each extended entry question.

Pollack et al2 recommend that the ELSE rule should be used
only as an error rule, not as a "residual rﬁte", while other
authors, for example Knighté are opponents of the ELSE rule per
se. A note in the Britisﬁ'StandardT states that "the ELSE rule
should always be used with caution since it could‘be accepted in
place of a rute omitted by mistake“. In the author's opinion
the ELSE rule is useful in the Limited way suggested by Pollack,
_especially if there are a largé number of highly dimprobable
combinations of conditions which can_be dealt with by ane error
routine. ’ '

Johnson‘ suggests two new conventions a§§bc§ated with
extended entry tables. The first of these isfing\use of the
special symbol “@" to represent “any «alue other than those
explicitfy mentioned elsewhere'. The* table in Figure— 1.12
specifies a code checking algorithm for a nine character code of.
the form: tuwo alphabetic characters, six numeric characger;:
terminated by one of the letters A, B, C or D. This fliustrates
8 possible use of the *'3‘ convention, rule 5 separates the
special case where the code Lletter, is not equal to A, B, C or D
from the more general error conditions.

Johnson's other suggestion for extending the table format

