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PREFACE

At the invitation of the Institute of Macromolecular Chemistry of the Czechoslovak Academy
of Sciences, the Commission on Crystallographic Computing of the International Union of
Crystallography organized an International Summer School on Crystallographic Computing
for the period 28 July-5 August 1975. The school was held at the Agricultural University, Prague
6-Suchdol, Czechoslovakia, and was attended by 239 crystallographers from 28 different
countries. This number included 33 invited lecturers, 9 invited contributors, and the Summer
School Editor.

This book contains the proceedings of the school, and covers three main topics which are
considered to be of current interest to a wide segment of crystallographers, namely:

(A) Structure Solving by the Direct Method,
(B) Computational Aspects of Protein Crystallography, and
(C) Miscellaneous Crystallographic Computer Applications and Techniques.

In these lectures, you will find brief presentations of the theoretical background, description
of some of the well-established techniques and details of their application, and some of the most
recent developments in the field. The discussion accompanying each paper, though brief,
gives a fairly good representation of the main points raised at the meetings.

The organization of the scientific programme was the responsibility of the Commission:
F. R. Aumep (Chairman); S. A. ABRAHAMSSON, G. C. Bassi, A. C. LARrsoN, T. SAKURAIL K.
SasvAry, V. I. SiMmoNov and M. M. WooLFsON (Members); K. HUML, J. M. STEWART and
G. Tsoucaris (Consultants), in collaboration with the following Topic Chairmen: D. M.
BLow, J. KARLE, G. KARTHA, P. W. SCHMIDT and B. K. VAINSHTEIN. The careful work of those
mentioned, the advice of D. W. J. CRUICKSHANK in the early stages, and the collaboration of
the invited Lecturers and Contributors are the main reasons for the high quality of the scientific
programme reported in these proceedings.

The Local Organizing Committee consisted of: K. HUML (Chairman); B. SEDLACEK (Summer
School Editor); V. PETRUS (Social Committee); S. NESPUREK (Technical Committee); J.
BALDRIAN, J. HASEK, D. HLAVATA, J. JECNY, V. LANGER, J. PLESTIL and J. SOLER (Members);
H. KoNASovA, B. KovARikovA and H. VORACKOVA (Summer School Secretariat). The hard
work of these colleagues, their dedication and close attention to all details prior to and during
the school period, were greatly appreciated by all participants. Their outstanding efforts
culminated in a very successful school.

The school gratefully acknowledges the generous support given by the following sponsors:
Charles University In Prague (Faculty of Natural Sciences, and Faculty of Mathematics and
Physics), Czech Technical University (Faculty of Nuclear Science and Physical Engineering),
Czechoslovak Scientific and Technical Society, Institute of Chemical T echnology (Prague),
International Business Machines Corporation, International Union of Crystallography, Slovak
University of Technology (Bratislava), and UNESCO.

The Editors are particularly grateful to K. FRiML (Head of the Institute of Macromolecular
Chemistry, Czechoslovak Academy of Sciences) and A. LiNek (Representative of the Czecho-
slovak National Committee for Crystallography) for arranging the invitation to Prague; to
DoroTHY HODGKIN, S. E. RAsMUSSEN and J. N. KiING (Officers of the International Union of
Crystallography) for administrative help and advice; and to MARGARET E. Pippy (of the
National Research Council of Canada) for transcribing the discussion from tapes and for other
secretarial assistance. E. J. GaBE kindly pre-edited one of the manuscripts.



It is a pleasure to acknowledge the cooperation and hard work of the various authors of the
enclosed articles, and to thank them for participating in the school. Like its predecessor Crystallo-
graphic Computing (1970), this book is published by MUNKSGAARD, International Book-
sellers and Publishers, Ltd., Copenhagen, at their own financial responsibility. These publishers
deserve our compliments for their interest and numerous services in the field of crystallography.

Prague, Czechoslovakia F. R. AHMED
September, 1975 K. HuML
B. SEDLACEK
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The Direct Method for Crystal Structure Determination,
Mathematical and Philosophical Concepts

JEROME KARLE

Laboratory for the Structure of Matter, Naval Research Laboratory, Washington, D.C. 20375

The field of direct crystal structure deter-
mination is marked by a kind of mathe-
matical complexity which is not in any
evident fashion amenable to the standard
procedures of numerical analysis. Never-
theless, considerable success has been
achieved toward the goal of making the
direct method of crystal structure deter-
mination a fairly routine operation. A
clear understanding of this matter as well
as of the detailed procedures involved can
be obtained from a proper comprehension
of the mathematical character and basic
philosophy of the direct method.

The term direct structure determination
describes the determination of crystal and
molecular structure directly from the inten-
sities of the diffracted rays without the
use of special information, for example,
from the known positions of heavy atoms
that may be present, or from isomorphous
substitution or anomalous scattering. The
Patterson function (Patterson, 1935), a
Fourier map of the distribution of inter-
atomic vectors in a crystal, can provide a
basis for the direct determination of
structure from the intensities of diffraction.
However, in its common usage °‘direct
structure determination’ implies the use of
procedures involving direct phase deter-
mination i.e. the determination of structure
by use of the intermediate step of evaluating
the phases of the diffraction amplitudes
directly from the scattered intensities. By
means of appropriate Fourier series,
knowledge of the phases can immediately
provide structural information, thus obviat-
ing the need to analyze vector maps.

The complexity of the problem of

crystal structure determination derives in
part from the complexity of the contents
of the unit cells in crystals and in part
from the complexity of the mathematical
relationship between the atomic positions
and the diffracted intensities. As is generally
the case for complex systems, the attack
on this problem has been characterized
by the discovery of special mathematical
relationships and properties which could
be developed into practical procedures.
The identification of the particularly
useful relationships and their subtle feat-
ures took place over a number of years. It
is important to recognize that the dis-
covery of mathematical relationships is
at best only the beginning. Much effort is
often required to develop their practical
aspects if, indeed, they exist at all.

Existence of solution to structure
problem

There is a sound mathematical basis for
expecting that a solution to the problem
of determining crystal structures directly
from the measured diffraction intensities
should exist. This matter will now be
considered.

The electron density distribution function
p(r) describes the structure of a crystal.
The maxima of this function locate the
atomic positions. Because of the three-
dimensional periodicity of a crystal struc-
ture, p(r) may be represented by a three-
dimensional Fourier series,

p(r) = V-1 2 Fyexp(=2nih.®) (1)

-0
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where the coeflicients
Fy = |Fy|exp (ipy) )]

are the crystal structure factors, the
amplitudes of coherent scattering associated
with plane segments in the unit cell labeled
with the vectors h. The components of h
are the integers A,k,/ which are inversely
proportional to intercepts of the corres-
ponding planes on the chosen axes. The
angle ¢, is the phase associated with Fy
and r is the position of any point in the
unit cell.

The structure of any crystal could be
readily computed from (1) if the co-
efficients F,, were directly available from
experiment. Ordinarily, only the magni-
tudes {Fy| of the coeflicients are obtainable
from experiment which are proportional
to the square roots of the corresponding
experimentally measured intensities. How-
ever, one of the subtle features of the
mathematics of diffraction from crystals is
the fact that the phase information, which
seems to be lost in a diffraction experiment,
is in fact contained in the measured
intensities of scattering. The problem of
determining crystal structures is associated
with the apparent absence of phase
information which, in this context, is
generally referred to as the ‘phase problem’.
The manner in which the values of the
phases of the structure factors can be
extracted from the experimentally deter-
mined magnitudes of the structure factors
is, in essence, the main consideration of
this article.

The Fourier inversion of (1) followed by
the reduction of the integral to the sum of
contributions from the N discrete atoms
in the unit cell gives for the Fourier co-
efficient,

|Ful exp (igy) = jﬁ:f, exp(2nih.1)) (3)

where £, is the atomic scattering factor of
the jth atom in the unit cell and r, is its
position vector.

JEROME KARLE

The solvability of the phase problem
can be established by examining the set of
simultaneous equations comprising Egs.
(3). Equations (3) form a system of simul-
taneous equations since a large number of
vectors h are considered. The unknown
quantities are the phases ¢, and the atomic
position vectors r;. The known quantities
are the magnitudes of the structure
factors |F,|, obtainable from experiment,
and the atomic scattering factors fj,
which are tabulated. By multiplying Egs.
(3) by their complex conjugates, phases are
eliminated giving

|Fy|? =I§Nl kgf,.,ﬁ‘.. exp 2nih. (r; — r,).
@)

The unknown quantities in Egs. (4) are
the independent atomic coordinates in an
asymmetric unit of the unit cell. A copper
target for X-radiation usually provides the
values of the intensities, |F,|?, for as
many as 150 independent reflexions for
each atom in the asymmetric unit of a
centrosymmetric crystal, and 75 independ-
ent reflexions for each atom in the asym-
metric unit of a noncentrosymmetric
crystal. Since each atom has three posi-
tional coordinates, the simultaneous Egs.
(4) would be overdetermined by a factor of
about 50 for centrosymmetric crystals
and by about 25 for noncentrosymmetric
ones. Although there is some inaccuracy of
a few percentages in the values of the |F,|?
and the f;, the great overdeterminancy of
Eqs. (4) makes these errors unimportant.

Equations (3) from which Eqs. (4) are
obtained contain the additional unknown
phases. The overdeterminancy for this set is
the same as that for Eqgs. (4) because each
equation in set (3) involving complex
quantities is actually two equations, one
for the real part and one for the imaginary
part. Thus, the problem of determining
phases from the measured intensities is
greatly overdetermined. The overdeter-
minancy provides the rationale and the
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motivation for searching for a solution
to the problem of determining structures
directly from the intensities of diffraction.
It is generally considered more readily
feasible to determine structures by first
determining phases and then computing
Eq. (1) than to find the atomic coordinates
directly.

Atomic coordinates may be obtained
directly from an analysis of the Patterson
function (Buerger, 1959; Hoppe, 1957;
Nordman & Nakatsu, 1963; Huber &
Hoppe, 1965)

P(r)= i |Fyul?exp (—2mih.r). ()
h .

-0

The maxima of this function represent the
interatomic vectors in a structure. Evi-
dently the coefficients of the series are not
dependent upon a knowledge of the phases
and therefore the Patterson function can
be calculated for any crystal from the
measured X-ray intensities. The analysis
of the Patterson function is generally very
difficult because of the lack of resolution
of the N(N — 1) interatomic vectors. How-
ever in the case that a structure possesses
only a few heavy atoms, the Patterson
function is quite useful because the inter-
atomic vectors associated with the heavy
atoms are readily identifiable. The posi-
tions of the heavy atoms, as obtained from
the interatomic vectors, can be used in
Egs. (3) to calculate an initial set of
phases. There are several methods for
developing a complete structure from this
information (Woolfson, 1956; Bertaut,
1957; Sim, 1960; Hoppe & Huber, 1963;
Srinivasan, 1966; Karle, 1968).

Despite the limitations on the direct
analysis of a Patterson function, the great
overdeterminancy of the structure prob-
lem, as previously demonstrated, implies
that there may well be an alternative method
which extends the range of complexity of
structures that can be readily handled by
X-ray analysis. The direct method of
phase determination has this capability.

It is of interest to examine the mathe-
matical background and philosophic con-
cepts which have led to the development
of this method.

Basic concepts and mathematical
relationships

It is often important, in attempting to
solve physical problems, to take full
advantage of the various special mathe-
matical and physical properties of the
system under study. The basic property
leading to the practical solution of the
problem of determining phases from the
measured X-ray diffraction intensities is
the non-negativity of the electron density
distribution. This property of non-nega-
tivity was utilized to obtain the main
formulas for phase determination (Karle &
Hauptman, 1950).

The concept of non-negativitity in
structure analysis was first developed for
analysis of molecular structure utilizing
electron diffraction by gaseous molecules
(Karle & Karle, 1949, 1950). The problem
in this field of structure determination was
to find a suitable background intensity,
representing the atomic coherent and
incoherent scattering, so that the mole-
cular interference intensity could be ac-

_ curately separated from the total intensity

of scattering. The total intensity is com-
posed of the molecular intensity plus the
background intensity. The problem was
solved by recognizing that the Fourier
sine transform of a function of the mole-
cular intensity is related to the probability
of finding interatomic distances in the
molecule, a radial distribution function.
It is apparent that the Fourier transform,
representing probabilities, must be non-
negative. The shape of the background
intensity is determined by requiring this
smooth function to have the property
that the corresponding molecular intensity
function have a non-negative Fourier sine
transform (Karle & Karle, 1949, 1950).
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The application of this mathematical
requirement was successful and led to the
search for other possible applications of the
concept of non-negativity in the field of
structure research. It is quite apparent that
the electron density distribution function
for crystals is a non-negative function.
Relationships occur among the structure
factors as a consequence of the non-
negativity which take the form of an
infinite set of determinantal inequalities
of increasing order whose elements are the
structure factors (Karle & Hauptman,
1950). In order of complexity, the first
inequality statement is that Fyo, must
be non-negative, the second is that
|Fy] < Fooo and the third gives a relation-
ship among the structure factors which is
of great significance to direct crystal
structure analysis. The inequality may be
written

Fooo Fx Foy
Fy Fooo F_px | 20. (6)
F, B Fowo

The most significant features of this in-
equality cannot be readily seen when
written in the form of (6). In order to
understand the meaning of (6), it is im-
portant to rewrite it in the alternative
form given in the 1950 paper of Karle &
Hauptman.

F By
Fp — Xk o
" FOOO
FOOO F—k 12 FOOO F—h+k 12
Fk FOOO Fh—k FOOO . (7)
FOOO

The interpretation of this inequality is
that the structure factor F, is bounded by a
circle in the complex plane which has its
center at Fi Fy,_/Fo0o and a radius given
by the right side of (7). For the structure
factors of unusually large magnitude, the
inequality (7) becomes quite restrictive
because the right side of (7) becomes
rather small and it is a simple matter to

JEROME KARLE

conclude that ¢,, the phase of F, is
approximately equal to ¢, + @n_y, the
phase of F, F,_,. By defining ‘sharpened’
structure factors e.g. the unitary structure
factors,

N
Un = Fn/ Z-fjh’
J=1

inequality (7) may be replaced by

| Un — Ux Up |
1 U421 U_px |2
Slou, 1 Uy, 1 ®)

Such an inequality is strengthened as
compared to (7) because the right side of
(8) is relatively smaller in the sense that
|Uy| > |Fx|/Fooo and |Up x| > |Fyuy|/Fooo-
It is important at this point to note,
however, that the size of the bounding
circle is not a satisfactory measure of the
validity of the relation

P~ Py + Ppx. ©

Were this the case, inequalities (7) and (8)
and their implication (9) would appear to
be applicable to only the simplest crystals.

To obtain a proper understanding of
the broad applicability of relations (7)—(9)
it is necessary to consider another aspect
of the inequalities, namely their probabil-
istic properties. Previous to the develop-
ment of the inequalities such as (6)—(8),
Harker & Kasper (1948) developed a
system of inequalities based on the Schwarz
and Cauchy inequalities. It was apparent
after they were obtained that the complete
set of inequalities of Karle & Hauptman
(1950), derived from the non-negativity of
the electron distribution, contained the
Harker-Kasper inequalities. Non-nega-
tivity was implicitly assumed in the deriva-
tion of the latter. Although inequalities
(7) or (8), having principal significance
to present methods of phase determination,
are not to be found explicitly stated among
the Harker—Kasper inequalities, the in-
equalities of Harker and Kasper have



