

Introduction to COBOL

John A. Bonno
Texas A & | University

Kent T. Fields

Louisiana State University

1982

BUSINESS PUBLICATIONS, INC. Plano, Texas 75075
Irwin-Dorsey Limited Georgetown, Ontario L7G 4B3

© BUSINESS PUBLICATIONS, INC., 1982

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior
written permission of the publisher.

ISBN 0-256-02287-9
Library of Congress Catalog Card No. 80-70654

Printed in the United States of America

1234567890ML98765432

Preface

This text is intended for use in a one- or two-term course in COBOL.
It introduces the COBOL language as outlined in the American National
Standards Institute 1974 and 1968 Standards.

The approach of this book is to present structured techniques in the
writing of COBOL programs. In addition, we have attempted to intro-
duce all of the features that are available in both the 1968 and 1974
versions of the language. Where these versions differ, we have clearly
marked 1968 or 1974 in the margin of the text. Some features are avail-
able in the 1968 version that are not available in the 1974 version. The
organization of the text is such that the instructor may either take the
chapters in sequence as they appear or may rearrange the introduction
of the material after Chapter 6. In general we believe that the intro-
duction of enough basics to allow the student to begin coding and have
an understanding of the coding process is covered in the first six
chapters. While we would like to see students coding earlier than the
completion of Chapter 6, it has been our experience that students
engage in the coding process without understanding what is going on.
Consequently, more material is presented in these early chapters than
will be seen in the usual COBOL text.

At the end of each chapter we have presented illustrative programs.
Although the students may not be able to code their own programs for
the first five or six chapters, they may begin executing the programs that
appear at the end of the chapters. This will give an idea of how COBOL
programs work. All the programs at the end of the chapters have been
tested.

The chapters that make up this text have been classroom tested over
a series of semesters at the universities where the authors teach. The
questions appearing at the end of each chapter are those that have most
often arisen in discussions after the presentation of the material.

We would like to express our appreciation to jerry Hanys of the El
Paso Natural Gas Company, Ron Gillet of the Coastal Corporation, and

v

vi

David Lamoreaux of PPG Industries for their assistance in classroom
testing and program testing of the materials in this book.

Your comments, criticisms, and suggestions as to the contents of the
text are not only appreciated but encouraged. Please write to us if you
have comments to make about the contents of the work.

Acknowledgment

The following acknowledgment is made at the request of the Ameri-
can National Standards Institute, Inc. From ANSI X3.23-1974, American
National Standard: Programming Language COBOL (1974).

COBOL is an industry language and is not the property of any orga-
nization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by
the CODASYL Programming Language Committee as to the accuracy
and functioning of the programming system and language. Moreover,
no responsibility is assumed by any contributor, or by the committee, in
connection therewith.

The authors and copyright holders of the copyrighted material used
herein

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for
the UNIVAC® | and II, Data Automation Systems copyrighted 1958,
1959, by Sperry Rand Corporation: IBM Commercial Translator Form
No. F 28-8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-2760,
copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part,
in the COBOL specifications. Such authorization extends to the repro-
duction and use of COBOL specifications in programming manuals or
similar publications.

John A. Bonno
Kent T. Fields

Contents

PART 1

BASIC CONCEPTS

1. Introduction to COBOL cciiiiiiieann. 3
A. History, acceptance, and versatility. B. An overview. C. The COBOL
compiler. D. The computer system and the operating system. E. Job controf
language and the COBOL program. F. The COBOL divisions. G. Basic
organization and structure of a COBOL program. H. Purposes of each
division. I. Review of concepts.). Sample COBOL program.

2. Fundamentals of COBOLcc.oiviiie. 17
A. The COBOL character set. B. COBOL words. C. The coding sheet.
D. Card layout. E. Files and records. F. Modular sequence charts. G. Note
to the beginner, H. Review of concepts. |. Sample COBOL program.

PART 1l

WRITING A SIMPLE COBOL PROGRAM

3. Basic rule for the IDENTIFICATION and ENVIRONMENT DIVISIONS 45

A. Purpose of the IDENTIFICATION DIVISION. B. Required statements—
IDENTIFICATION DIVISION. C. IDENTIFICATION DIVISION-—shorthand
notation. D. Purpose of the ENVIRONMENT DIVISION., E. Sections of the
ENVIRONMENT DIVISION. F. The CONFIGURATION SECTION. G. The
INPUT-OUTPUT SECTION. H. ENVIRONMENT DIVISION—shorthand no-
tation. 1. Review of concepts.]. Sample COBOL program.

Basic DATA DIVISION entfriescccoiinuninn. 58

A. Purpose of the DATA DIVISION. B. The DATA DIVISION and FILE
SECTION. C. The FD entries. D. Record descriptions. E. Placement of
detailed description of records. F. WORKING-STORAGE SECTION. G. Field
description and PICTURE clauses. H. The X in input PICTUREs. I. The
9, V, and S in input PICTUREs. J. The VALUE clause. K. Filler. L. Files,

vii

viii

records, and fields. M. Data names, data-name locations, data-name
values. N. Unedited outputs. O. Review of concepts. P. Sample COBOL
program.

Some basic PROCEDURE DIVISION concepts 79

A. Purpose of the PROCEDURE DIVISION. B. Paragraph structure. C. Para-
graph names. D. Order of execution. E. A brief note about structured
programming. F. Transfers of control. G. Review of concepts. H. Sample
COBOL program.

Basic input-output commands, MOVE, COMPUTE 92

A. The OPEN statement. B. The basic READ statement. C. The basic MOVE
statement. D. Nonnumeric MOVE. E. The basic WRITE statement. F. The
COMPUTE statement. G. Review of concepts. H. Sample COBOL program.,

PART NI
WRITING MORE COMPLEX PROGRAMS

7.

8.

The DATA DIVISION—editing printed output 123

A. Perspective point. B. Qutput pictures. C. X (alphameric) in output
pictures and A (alphabetic) in input or output pictures. D. Truncation.
E. 9, V, and . (decimal points) in output pictures. F. The , (comma) in
output pictures. G. The $ (dollar sign) in output pictures. H. The Z (zero
suppression) in output pictures. I. The $$$$ (floating dollar sign) in output
pictures. J. The + (plus sign) in output pictures. K. The ++++ (floating
plus sign) in output pictures. L. The — {minus sign) in output pictures,
M. The ———— (floating minus sign) in output pictures. N. The * (check
protect symbol) in output pictures. O. The CR and DB (credit and debit
balance) in output pictures. P. Blank insertion in output pictures. Q. Zero
insertion in output pictures. R. The / (slash) in output pictures (1974
standard only). S. Negative numbers and the output pictures. T. Repetitive
specifications in pictures. U. Examples of edited pictures. V. The P in input
pictures. W, Alphameric-edited pictures. X. Review of concepts. Y. Sample
COBOL program.

The PERFORM statement, 144

A. The simple PERFORM. B. PERFORM with the THRU option. C. EXIT
paragraphs and the THRU option. D. PERFORM with the TIMES aption,
E. Flowchart of the TIMES option. F. PERFORM with the UNTIL option,
G. Flowchart of the UNTIL option. H. PERFORM of SECTIONS. I. Shorthand
notation. J. Review of concepts. K. Sample COBOL program.

Doing it right—Structuring programs and programming standards .. 172

A. The basic program of structures. B. The structured style of programming.
C. Implementation of structured programming in COBOL. D. Statements,
sentences, commands. E. Programming standards—indentation and inser-
tion of blank lines. F. Shorthand notation for COBOL implementation of

Contents ix

basic program structures. G. The NOTE statement and comment insertion.
H. Termination. 1. Review of concepts. J. Sample COBOL program.

PART IV
MORE ADVANCED COBOL PROGRAMMING FEATURES

10.

1.

12

13.

14.

15.

More MOVE statements 203

A. Perspective point. B. Nonnumeric MOVE at the group level, C. Numeric
MOVEs. D. MOVE ZERO. E. MOVE SPACE. F. MOVE CORRESPONDING.
G. Multiple MOVE statements. H. MOVE QUOTE. I. MOVE ALL. j. MOVE
HIGH-VALUE, LOW-VALUE. K. MOVE statement—shorthand notation.
L. Review of concepts. M. Sample COBOL program.

The arithmetic statementsc.ciiiuiin.. 222

A. The ADD statement. B. ADD with GIVING option. C. ON SIZE ERROR
option. D. The ROUNDED option. E. The ADD statement with multiple
receiving fields. F. ADD CORRESPONDING. G. The SUBTRACT statement.
H. The MULTIPLY statement. I. The DIVIDE statement. J. The REMAINDER
option. K. The COMPUTE statement with ROUNDED and ON SIZE ERROR
options. L. Shorthand notation. M. Review of concepts. N. Sample COBOL
program.

More DATA DIVISION considerations 247

A. Perspective point. B. BLANK WHEN ZERO. C. Relationship of output
record to the printed line. D. Printed headings. E. The JUSTIFIED clause.
F. Maximum size of data items. G. Order and style of DATA DIVISION
entries. H. Record description in FILE SECTION. |. Review of concepts.
J. Sample COBOL program.

Even more DATA DIVISION entries 260

A. Independent data items—77 level entries. B. 01 through 49 leve!
numbers and qualifiers. C. Group and elementary data items. D. Shorthand
notation. E. Review of concepts. F. Sample COBOL program.

The IF statement and conditions 286

A. The relation condition. B. Sentences, statements, and IFs. C. The single
IF. D. Multiple iFs. E. Single iFs and ELSEs. F. NEXT SENTENCE. G. Multiple
IFs and ELSEs. H. The operands and collating sequence in comparisons.
l. The sign condition. J. The class condition. K. The condition-name condi-
tion. L. Compound conditions. M. Implied subjects and relational opera-
tors. N. IF statements—shorthand notation. O. Review of concepts. P.
Sample COBOL program.

Debugging the program00 i 329

A. Compile time errors. B. Run time errors, C. DISPLAY statements. D.
TRACE statements. E. Other run time errors. F. Output errors. G. System
errors. H. Memory dumps. |. Note to the beginner. J. Review of concepts.
K. Sample COBOL program.

X

PART V
TABLES AND ARRAYS

16. Tables and the OCCURS clause 351

A. General concepts. B. Single-dimension tables. C. The OCCURS clause—
one dimension. D. Pictures and tables. E. The VALUE clause. F. Major
tables and subtables. G. Input records and tables. H. Tables and output
lines. I. Review of concepts. §. Sample COBOL program.

17. Tables—two- and three-dimensional 377

A. Concepts of dimension. B. The OCCURS clause—two-dimensional
tables. C. Use of PERFORM statements in table applications. D. Generating
printed output from two-dimensional tables. E. Three-dimensional tables.
F. Storing input data in three-dimensional tables. G. Generating printed
output from three-dimensional tables. H. Review of concepts. 1. Sample
COBOL program.

18. The REDEFINES clause ciiiiiinnniinnn 418

A. Implied REDEFINES. B. Explicit REDEFINES. C. Explicit REDEFINES and
TABLES. D. Review of concepts. E. Sample COBOL program.

19. The PERFORM VARYING statementcccuvuuon. 434

A. PERFORM with the VARYING option. B. Flowchart of PERFORM with
VARYING option. C. PERFORM VARYING with AFTER option. D. Flowchart
of PERFORM VARYING and AFTER option. E. PERFORM and VARYING
with the muitiple AFTER option. F. Flowchart of PERFORM with two AFTER
options. G. Shorthand notation. H. Sample COBOL program.

PART VI
SUPPLEMENTAL TOPICS

20. Modes of numeric storage 455

A. Types of machines. B. USAGE IS DISPLAY. C. USAGE IS COMPUTA-
TIONAL. D. Special considerations. E. Other numbering systems supported
by COBOL compilers. F. Review of concepts. G. Shorthand notation. H.
Sample COBOL program.

Appendix A ... e 468

Appendix B 472

part |- Basic concepts

N, T B SE EPDFIE Ui H) : www. ertongbook. com

chapter 1 - Introduction to COBOL

The word COBOL stands for COmmon Business Oriented Language.
COBOL is one of many languages used to communicate with a computer
in order to accomplish a task, particularly a business-oriented task.
Although the differences between scientific and business applications
are sometimes few, business problems usually have a significant amount
of input {information to be analyzed) and a volume of reports which will
be printed or maintained on various storage devices. It is the application
to business problems, the ease of reading a COBOL program written in
English-like sentences, and the wide acceptance of the language in
business and government that distinguish COBOL from other languages.

section A - History, acceptance, and versatility

Prior to 1959 each manufacturer of computers designed programming
languages for use on each of their machines or for use by a series of
machines produced by them. In many cases, other manufacturers would
be sufficiently impressed by the characteristics of a particular language
designed by a competitor to adopt parts of the language or to design a
similar language for use with their own machines. This proliferation of
noncompatible programming languages was a source of considerable
concern to large-scale computer users who owned or leased equipment
produced by two or more manufacturers. Not only would programs

3

4

written for one machine fail to execute on another machine of different
manufacture, but also the exchange of programs and the exchange of
programming experience and skilled personnel was drastically limited
by the nonstandardization of languages. Early in 1959 the largest of the
computer users, the U.S. government, became concerned enough to
initiate some action. At a meeting called by the secretary of defense, a
committee was formed to investigate the problem of establishing a
standard language for use in business and government applications.
This committee, made up of representatives from business, government,
and computer manufacturing, was called CODASYL, an acronym for the
COmmittee on DAta SYstem Languages. A subcommittee was formed to
establish a COmmon Business Oriented Language, and the acronym for
this committee name serves to identify both the committee and the
language which it designed—COBOL.

The first COBOL language described by the committee was designed
to provide an initial language for temporary use by government and
industry pending design of compilers for the basic language by each of
the manufacturers. This development work was several years in process,
so that several versions of the “temporary” COBOL were released. These
releases (by the COBOL committee} were known as COBOL-60,
COBOL-61, COBOL-61 (extended), and COBOL-63.

From 1961 through 1968 the manufacturers released their own
COBOL versions (for example, IBM 360 LEVEL E COBOL, superceded
by LEVELF, and so on). These versions were all within the general frame-
work outlined by CODASYL. With the passage of time, however, they
were becoming less and less standard.

In 1968 a new “’standard” COBOL was introduced. It was called
United States of America Standards Institute (USASI) COBOL, with a
name change in 1969 to American National Standards Institute (ANSI)
COBOL. All major manufacturers now support the ANSI version and,
for the most part, have abandoned support of their private versions. Yet,
before ANSI COBOL (1968) was off the presses, various computer man-
ufacturers had already added extra items to the language. So in addition
to the basic statements that are in ANSI COBOL, each manufacturer has
added COBOL verbs (commands or procedural instructions to the
computer), allowed abbreviations to be used that are not part of ANS|
COBOL, added new types of PICTURES that are allowed to describe
data items; and other changes. This is not bad in itself because the
additions usually make the language more flexible, but the additions
also prevent a “standard” ANSI COBOL program being run on any
manufacturer’s equipment. So long as the programmer sticks to basic
COBOL statements, interface (transferability) with competitive equip-
ment is maximized. This allows a company to have the ability to change
to another company’s computer equipment and still use the COBOL
programs that have been written without the inconvenience of convert-

1« Introduction te COBOL 5

ing or rewriting programs from one manufacturer’s COBOL to another’s.

The ANS!I STANDARD COBOL (1968) was on a five-year revision
cycle. In May 1974 (a year late) the ANSI COBOL standard X3.23-1974
version was adopted as a national standard. Shortly thereafter this stan-
dard was adopted by the federal government. A copy of the standards
can be obtained by writing to:

American National Standards Institute
1430 Broadway
New York, New York 10028

As with most new things, it takes time to get the ideas into actual
usage. The various manufacturers must incorporate the new facets of
the language for their specific hardware. Since both the 1968 version and
the 1974 version are currently in use, this text deals with both versions
of COBOL.

The American National Standards Institute lists 189 “substantive
changes” to the 1968 COBOL. However, most of these do not affect the
basic structure of COBOL. Anyone who can write the 1968 version would
have little difficulty in converting to the 1974 standards and vice versa.

Most of the changes to the 1968 version of COBOL do not affect pro-
gramming techniques very much. A few of the changes, however, require
specific alterations of former programs if they are to be run (compiled)
with the 1974 version of COBOL.

For example, the entry REMARKS is allowed in the 1968 version but
not allowed in the 1974 version. In this case, both the REMARKS entry
and its replacement (an asterisk) will be covered in this text. The text
regarding the 1968 version will have side borders indicating 1968—1968~
1968-1968, meaning this applies only to 1968 COBOL. The text regard-
ing the 1974 version will have side borders indicating 197419741974~
1974, meaning this applies only to 1974 COBOL. If the material is
applicable to both, no side borders will be used.

[+ [
& Material that is enclosed inside these side borders is specifically related &
E to the 1968 version of COBOL and not valid in the 1974 version of ANSI i
& COBOL. L
~— o
<t —_
& Material that is enclosed inside these side borders is specifically related 9§
z to the 1974 version of COBOL and not valid in the 1968 version of ANSI _ﬁ
% COBOL. 9
- EN

In this book, an attempt has been made to write ANSI COBOL, or
COBOL that will run on most computer equipment. On occasion, state-
ments that are peculiar to various manufacturer’s equipment will be dis-
cussed and separated from the rest of the COBOL statements. Burrough's

6

Corporation, Control Data Corporation (CDC), Digital Equipment
Corporation (DEC), International Business Machines (IBM), National
Cash Register (NCR), and Sperry Rand COBOL are considered in this
book.

section B - An overview

The purpose of this book is to help you write COBOL programs.
A COBOL program is a series of instructions written in English-like
sentences.

The COBOL program is then run on a computer (computer system).
The computer system is composed of a series of physical devices referred
to as hardware. The separate pieces of equipment can function on their
own, that is, a card reader can read cards. However, this is of little con-
sequence if nothing can be done with the information. It is not enough
that card readers can read cards and printers can print information on
paper. The computer system must be given some intelligence so that it
will read cards at the appropriate time, manipulate data from the proper
locations in memory, and write the desired information. The computer
hardware is given instructions (called software) which control such activ-
ities. These instructions (intelligence) are generally called an operating
system.

The operating system is capable of handling COBOL programs but
not by itself. You will submit a COBOL program to the computer system
(the hardware) through an operating system. The operating system, how-
ever, does not understand the COBOL instructions you have written.
There must be something that can convert the COBOL commands (in-
structions) into machine language (or machine executable instructions).

There must be additional intelligence provided to the computer so
that the COBOL program can be translated from the English-like sen-
tences into machine language. This intelligence is called a compiler
(which is also software).

When you submit a COBOL program for the computer to run, you
must tell the operating system certain facts about your program. This
would include the fact that it is a COBOL program. When the operating
system knows that it has a COBOL program to run, it will first use the
COBOL compiler to translate the COBOL commands into machine
language. It then has something which the computer (hardware) can use.

In order to communicate with the operating system, you will have to
learn a few parts of another language often called job Controf Language
(JCL)." Itis the JCL that tells the operating system facts such as who you
are, who should be charged with the cost of running the program, the
type of language your program is using, and other information.

! Some systems use different terminology. For example, the UNIVAC system uses
RCL (Run Control Language).

1 ¢ Introduction to COBOL 7

For each computer the JCL is different. Some examples of JCL are
given later in this chapter. Before you can run your first program, either
the computer center or your instructor will have to tell you what JCL is
required for your computer system.

In summary then you have:

A computer system (the hardware)

The operating system

JCL (to communicate with the operating system)
The COBOL compiler

The COBOL program

Software

iAW~

These are discussed separately in the following sections.

section C - The COBOL compiler

The computer is the electronic machine that will handle your pro-
gram. This machine works in its own language, which can be electron-
ically understood. COBOL is written in English-like words and sentences
and must be translated into machine language for the computer to
perform according to the instructions in your program. The translator
(translator program) is referred to as a compiler. The compiler is acti-
vated by the computer system and it translates your program from
COBOL into machine language. The compiler also provides for program
listings (list of the statements in your program) and error messages (the
best estimate of what is wrong with your program). These error messages
are also commonly referred to as diagnostics.

The compiler is generally provided by the manufacturer of the com-
puter equipment so that your COBOL program will run on that equip-
ment, Therefore, the COBOL commands that you write must fit the
compiler. Although most of the COBOL commands are the same for all
manufacturers’” COBOL compilers, there are nonetheless some differ-
ences. As you are shown the particular COBOL commands, the areas of
difference will be pointed out.

Compile Time is the amount of time required by the COBOL com-
piler to translate your statement to machine executable instructions,
usually measured in seconds.

section D - The computer system and the operating system

When you attempt to run a program there will be a significant number
of things happen that do not directly concern you. The computer system
(hardware) being directed by an operating system will take the COBOL
program and translate the COBOL commands with the use of the
COBOL compiler. Your COBOL instructions will then be able to com-

municate with the operating system so that you may use the card reader,
the printer, and any other equipment necessary for your program.

When you (or the computer center operator) press the READ button
on the card reader to feed the information from the cards into the
computer, it is not your COBOL program that is directing the computer
to read the deck. It is the operating system. The operating system takes
the COBOL commands and processes them. When the COBOL compiler
is finished, the operating system has a set of machine executable instruc-
tions (generated by the COBOL compiler) that it can use.

The machine executable instructions furnished by the COBOL com-
piler is often called an object program (or, if in card form, an object
deck). After the compiler is finished, the computer system will allow the
object (COBOL) program to run. By run we mean to start processing
the instructions. This is often called the execute step (stage) or the GO
step. In the GO step the object (COBOL) program can cause information
to be brought in from the card reader (or other input device) or have
information transferred to the printer (or other output device).

Execute time is the amount of time used by the object program to
carry out the instructions of the COBOL program. Execute time is
generally composed of input time, CPU time, and output time.

Input time is the amount of time necessary to bring information into
the computer (input). CPU time (central processing unit time) is the
amount of time required for the CPU to carry out its functions of arith-
metic and/or data manipulations. Output time is the amount of time
used to get the desired information out of the computer (output).

The amount of time used in the compiler step is a function of the
complexity of the program. The amount of time used in the GO (or
execution) step is a function of the amount of input and/or output you
want,

Depending on the efficiency of the operating system you are using, it
is possible for the CPU to generate several thousand lines of output for
the printer in a matter of seconds.

Figure 1-1 illustrates what happens when a COBOL program is sub-
mitted to a computer system to be compiled and run.

Itis not necessary for you to know how an operating system works in
order to run your COBOL program, but you must know how to com-
municate with the operating system. This is done through the use of a
Job Control Language (JCL). This JCL will be different for every operat-
ing system, although in many cases the differences may be minor. To get
an idea of the great number of computer systems that exist, consider
the 1BM 360/370 series of computers. IBM is one of a half-dozen major
computer manufacturers and the 360/370 series only one of several
computer series that they either manufacture or have previously manu-
factured. Yet there are four different operating systems that are designed
for the 360/370 alone. These are disk operating system (DOS 360/370),

