A Logical Language for
Data and Knowledge Bases

Shamim Naqvi
Shalom Tsur

A Logical Language for :
Data and Knowledge Bases

Shamim Naqvi
Shalom Tsur

COMPUTER SCIENCE ‘PRESS
New York

Library of Congress Cataloging-in-Publication Data

Nagqvi, Shamim.
A logical language for data and knowledge bases.

Bibliography: p. .~

Includes inde%

" 1. LDL (Comphuter program language) 2. Data base
management. 3 Artificial intelligence. 1. Tsur,
Shalom. 1I. Title.

QA76.73.L15N36 1989 005.75'6 89-682

ISBN 0-7167-8200-6

Copyright © 1989 Computer Science Press

No part of this book may be reproduced by any mechanical,
photographic, or electronic process, or in the form of a phonographic
recording, nor may it be stored in a retrieval system, transmitted, or
otherwise copied for public or private use, without written permission
from the publisher.

Printed in the United Sﬁws of America
Computer Science Press

1803 Research Boulevard
Rockville, MD 20850

An imprint of W. H. Freeman and Company
41 Madison Avenue, New York, NY 10010
20 Beaumont Street, Oxford OX1 2NQ, England

1234567890 RRD 7654321089

PRINCIPLES OF COMPUTER SCIENCE SERIES

Series Editors

Alfred V. Aho, Bell Telephone Laboratories, Murray Hill, New Jersey
Jeffrey D. Ullman, Stanford University, Stanford, California

Theo Pavlidis

Algorithms for Graphics and Image Processing
C.K. Wong

Algorithmic Studies in Mass Storage Systems
David Maier

Theory of Relational Databases

Jeffrey D. Ullman

Computational Aspects of VLSI

Advanced C: Food for the Educated Palate

Narain Gehani
C: An Advanced Introducu'on

Narain Gehani

C for Personal Computers: IBM PC, AT&TPC 6300, and Compatibles
Leonard R. Marino

Principles of Computer Design

Christos Papadimitriou

The Theory of Database Concurrency Control
Michael Andrews

Computer Organization

Steven Tanimoto

Elements of Artificial Intelligence Using LI.!P
Egon Bérger, Editor

Trends in Theoretical Computer Science -
Martti Miintyli

An Introduction to Solid Modeling

Jeffrey D, Ullman
Principles of Database and Knowledge Base Systems, Volumes I and Il

Jim Moore
UNIX: The Minimal Manual

Shamim Naqvi and Shalom Tsur
A Logical I.anguage Jor Data and Knowledge Ban.t

OTHER BOOKS OF INTEREST

Arto Salomaa
Jewels of Formal Language Theory

Jeftrey D. Ullman

Principles of Database Systems

Kurt J. Schmucker '

Fuzzy Sets, Natural Language Compwtations, and Risk Analysis
Stuart C.

LISP: An Interactive Approach

TTITTwT I T - WEWEERERRNEETT T T T R T L F e vt ¢ L e T

Preface

§

This is a comprehensive account of the syntax and semantics of a new pro-
gramming language called LD L. In it are provided descriptions, both at the
informal and formal level, of every £D L construct. The informal descriptions
do not presuppose a high technical inclination but nevertheless are precise.
For the avid and mathematically inclined, advanced sections are provided
detailing model-theoretic and constrrctive semantics of the language. These
advanced sections themselves and by the nature of the language also serve
as introductions to current research topics in the theory of Data and Knowl-
edge Bases. The authors have striven for simplicity and brevity, but not at
the expense of accuracy. '

§

We have used both the terms data and knowledge in our title; their meaning
in our context warrants some discussion. The distinctions between these
concepts stem from the different computing cultures out of which they grew.
Let us first discuss the notions of data and a database. A database is a
system designed to query, update, and share a large volume of data. The
basic premise is that the volume of data is too large to be contained in its
entirety in the memory of a computer and hence, special access methods
are required to retricve the data efficiently from its secondary memory. An-
other premise is that the data are a permanent resource, to be shared by
different application programs over a long time span. This premise, which
is also known as the data independence requirement, implies that the query
language must be declaraiive in nature so that subsets of the stored data
can be specified in different application programs without any knowledge of
the actual layout or the mode of access to these data. The task of trans-
lating and optimizing the declarative specification into an efficient access
procedure is the responsibility of the database system. The technology to

implement this task, particularly within the context of relational database
systems, has been constantly improved over the past decade and has reached
a high degree of sophistication.

The database philosophy can thus be summarized as “simple but effi-
. cient.” Performance in data retrieval is at & premium, and the complexity
of the stored data is sacrificed in order to facilitate this objective. Typically,
the data format is a simple record, of a predetermined length and with a
fixed number of fields. This format is consistent with the relational data
model. Another consequence of this approach is that database systems offer
but a limited functionality: the query language enables only the specification
of a limited class of queries, and certain information implicit in the data can-
not be specified at all. Furthermore, data can only be retrieved or updated.
Other operations on data, e.g., arithmetic, cannot be performed within the
database system. To compensate for this limited functionality, database sys-
tems are used in conjunction with general-purpose programming languages:
the database subsystem retrieves the data, and further manipulation is per-
formed by the host programming language.

The concepts of knowledge and knowledge system have grown from the
artificial intelligence culture. The problem of knowledge representation is
a long-standing field of inquiry and efforts in this area have concentrated
on the design of (in-memory) data structures to encode “real-world” sit-
uations. The best-known result in this respect is the use of frames as a
knowledge representation device. Another Al effort concentrates on the use
of logics and inference methods, often in conjunction with knowledge rep-
resentation structures, to infer new knowledge from existing knowledge. So
far, the commercial results of this research manifest themselves in the form
of expert systems. The expert system paradigm assumes the existence of
a human expert, whose knowledge in some specific domain, e.g., a medical
specialty, can be articulated and mapped into a knowledge representation
structure. The structure can be queried and can, in conjunction with a logic,
be used to infer new knowledge. This is known as the “inference engine”
of the expert system. The logical conclusions of the deductive process are
dispensed as “advice.” The term knowledge base is thus used in Al to denote
the knowledge representation structure over which the logical inferences are
performed. '

Let us now briefly contrast these two cultures. The emphasis in Al is on
generality. Complex structures are used to represent classification schemes,
types, and other features pertinent to a real world situation. This contrasts
with the simple record structures used in the database world for factual
knowledge representation. At the same time, the total volume of knowledge

xil

used in an expert system is small and can be accommodated entirely in
main memory. Hence, the use of an in-memory dati structure to represent
knowledge. The volume concern in databases that dictates the use of simple
structures, is nonexistent in the Al context, as is the second database concern
of data independence. Expert systems in their present commercial form are
autonomous programs nat do not share data. Hence, there is no need for a
declarative form of data and knowledge access. Indeed, the mode of access
in knowledge bases is by navigation through the structure, and the resuits
may be dependent on the particular route taken. By contrast, a database
user does not know the details of the data representation and the results of
his or her query are independent of these details.

LD L as a system covers the middle ground between databases and knowl-
edge bases. On the one hand, it is committed to the database requirements
of volume and data independence; the LD L language is purely declarative
and the LD L system comes with a highly sophisticated optimizer, designed
to improve the performance of the complex queries that are generated by
the system. On the other hand, it provides some of the structural richness
and inference capabilities found in knowledge bases. In particular, users can
represent their knowledge within complex objects, e.g., lists, as well as set
types. The inference capability of the language enables the user to define
knowledge by intension, i.e., by the specification of rules that derive relations
from other relations. The terminology for systems of this type has not crys-
tallized yet, and they are variously referred to as logic databases, deductive
databases, or, to compound the confusion with expert systems, knowledge
bases. From now on we will use these terms synonymously.

From the database perspective logic databases extend the generality of
the traditional systems in the sense that they embody some of the function-
ality that otherwise had to be provided by the general-purpose application
language system. Another?mportant difference between the traditional host-
and embedded-language organization and logic databases is the elimination
of the impedance mismatch in the former case. The impedance mismatch
is the result of the combination of a procedural application language with a
declarative database query language. Severe inefficiencies may result in the
execution because of the inability to optimize a query over these incompatible
subsystems. In LD L the application language and the query sublanguage
are the same. Hence, no impedance mismatch exists, and queries can be
efficiently executed.

From the Al perspective the £D £ system can serve as the substrate upon
which some of the richer features, such as classification and type inheritance
schemes, can be built. This would endow expert systems with a database

xiii

capability they lack at present. We note that the present trend of using ex-
pert system shells in conjunction with conventional database systems suffers
from the same impedance mismatch as the conventional database application
language systems. As in the conventional case, it is imp8ssible to optimize
queries over the navigation-oriented, procedural knowledge structure of the
shell and the declarative database subsystem.

The evolution of the thinking that eventually led to £LD £ had its origins
in the areas of relational databases and logic programming. All of these
technologies have strengths, yet on its own, each is insufficient to meet the
objectives that we set out to achieve. A point of departure could be to
combine a logic programming language, e.g., PROLOG, with a relational
database system. Unfortunately, a combination of this type suffers from
two major shortcomings. The first shortcoming is that the computational
mechanisms of PROLOG, viz., SLD-resolution and backtracking, attempt to
compute a sirgle proof at a time. This results again, in an impedance mis-
match, since the (default) mode of computing all of the answers to a query
can now only be achieved by repeated proofs, one proof at a time, and the
query optimization mechanisms of the underlying database, which are set
orierited, cannot be utilized. The second problem in this approach is that
during the execution of a proof the computation may not terminate; hence,
the completeness of the result cannot be guaranteed. The approach adopted
in LD L is to retain Horn-clause logic and extend it but, in contrast to PRO-
LOG, to use a different interpretation of the logic that is more attuned to
applications with large volumes of data. The interpretation used Jjs model
based. The answer to a query is computed in a botiom-up application of the
rule set to the stored and the partially derived data until no further results
can be produced, i.e., a fixpoint has been reached. Since this method could
generate a great arnount of irrelevant and redundant data, if implemented
naively, the LD L system uses special compilation techniques developed for
this purpose that not only ensure an efficient execution but also guarantee
the completeness of the query-answering process. Fixpoint semantics, to-
gether with the compilation methods, are the key ingredients of this new
technology that enables the realization of integrated logic database systems
and removes the shortcomings in some of the other systems mentioned.

From the foregoing it appears that a complete discussion of LD £ would
entail both the language semantics and the compilation aspects of the sys-
tem. However, the methodology adopted for this book is language centered.
It covers the area by successive descriptions of containing subsets of the lan-
guage, each one having a more powerful semantics than its predecessor. This
way, we proceed from a simple but pure Horn-clause subset of the language

xiv

toward the full language and its extensions, such as the use of negation,
sets, and procedural extensions, while retaining its declarative character.
In this process we make occasional references to some of the compilation
techniques used but do not provide a complete coverage of them. General
compilation techniques for logic databases have been published in technical
conferences and ;ourrials. The subject is currently an active area of research
and is likely to remain so for the foreseeable future. We expect to see a
constant improvement of these methods as time progresses. While this is
an indication of a healthy state of affairs from the perspective of the ac-
tive database researcher in the field, it is still too early to summarize these
techniques so as to present them in a coherent fashion to a wider audience.
Hence, we have restricted our presentation of these techniques to those cases
where understanding them is essential to understanding the accompanying

material.

On the other hand, the theory underlying the language, the language
specification itself, and its semantics have matured to the extent that a tech-
nology transfer to a wider audience is feasible and desirable. The technology
can then be evaluated and appreciated by this community, concurrently with
the ongoing research in compilation techniques. In our view this wider audi-
ence consists of database professionals who are interested in evaluating the
technology for their own purposes and advanced computer science students
who have a background in database theory and/or logic programming. We
hope that the exposition of the ideas to this larger audience will result in
their application to real problems and their critical evaluation. We have
endeavored to accompany the book with a set of meaningful examples that
expose the power of LD L and describe, by means of an extended example, a
problem representative of the class of “data-dredging” problems. This class
of inductive data analysis problems appears to be particularly suitable for
treatment by the technology presented in this book.

The level of presentation of the material is split between an introductory
level required for the writing of simple programs and an advanced level re-'
quired for the deeper understanding of the issues involved. The introductory
level can be read independently of the advanced level.

The software that implements the ideas presented in the book is the
property of the shareholder companies of MCC. We hope that we will be
able to make it available to academic and other nonprofit institutions in the
near future. We expect that the experimentation with the system itself will
further enhance the understanding of the issues involved and ultimately will
lead to a wide adoption of this new technology.

XV

§

We are grateful to Kevin Greene, Pat Llncoln Jeff Naughton ‘Jeffrey D.
Ullman, Moshe Vardi, and members of the Languages Group at MCC for
reading earlier drafts of this manuscript and pointing out several errors,
omissions, and inconsistencies. Fagin’s early result on the inexpressibility
of the transitive closure in first-order languages, and other related results
on this topic, were brought to our attention by Moshe Vardi. We thank
Danette Chimenti and Ruben Gamboa for providing application programs
for Appendices C and D. These reviews, comments, and additions have sub-
stantially improved our presentation. Remaining errors and omissions are,
of course, the responsibility of the authors.

.Austin, Texas —SAN
January 16, 1989 —ST

xvi

Acknowledgment

-

The LD L system stems from a proposal by Shalom Tsur and Carlo Zaniolo.
As it stands now, it is the accumulation of the work—research on semantics
of database languages, inventing compilation and implementation strategies,
and good old-fashioned programming—of many people. This book is a de-
scription of the result of their efforts. We know that it does not capture the
quality and excellence of all their ideas. Our hope is that, in some small
way, it can convey the sense of excitement and pleasure that we have felt
in working with this wonderful group of people—members of the Languages
Group at MCC, visitors, consultants, and friends. Although we give a list of
names below, we remain convinced that some have been left out and hope
that those not mentioned will, as in the past, understand and alert us to
this failing .

" Hassan Ait-Kaci Frangois Bancilhon Catriel Beeri
Danette Chimenti Ruben Gamboa Tony O’Hare
Paris Kanellakis Charlie Kellog Ravi Krishnamurthy
Arshad Matin Tom McLellan Kayliang Ong
Raghu Ramakrishnan Domenico Sacca Oded Shmueli
Leona Slepetis Peter Song Millie Villarreal
Carolyn West Denise White Carlo Zaniolo

Contents

Preface

Acknowledgments

List of Programs

Warming Up

1.1 DatabaseSystems
1.2 Knowledge Base Systems
1.3 Why LDL? . . . e
14 DataDredging 0o
1.5 LDL Implementation.
1.6 A Glimpse of What IstoCome
1.7 @O WatchfulEyes
1.8 Howto Read ThisBook
1.9 Typographical Conventions

Gétting Started

2.1 “Just the Facts, Ma’am”
2.2 BeyondFacts e e
2.3 First-Order LDL Programs b e
2.4 Semantics of First-Order Programs

24.1
242
243
244
245
2.4.6

Declarative Semantics
Bottom-Up Semantics
Safety of Programs Under Bottom-Up Evaluations . .
Top-Down Evaluation of Programs
Safety of Programs Under Top-Down Evaluations

Relationship Between Different Semantics

2.5 Constituents of an LDL Program
2.6 Q0 Semantics of Programs

vil

2.7 @@ The Occur-Check Problemm 41

Running Back 43
3.1 Transitive Closureof a Relation 45
3.2 Linear Recursive Programs © 49
3.3 NonLinear Recursive Programs 51
3.4 Compiling for Bottom-up Computation 53

3.4.1 Naive and Seminaive Evaluation 55

3.4.2 Constant Pushing in Programs 57
35 @@MagicSets e 59
36 OO The Counting Method. 63
3.7 @@ The Henschen-Naqvi Algorithm 64
Adding It Up 67
4.1 Integer Arithmetic 68
4.2 Equality Predicate 72

421 Assignment 75
4.3 Comparisons Need Not Be Odious 76
4.4 A Special Functor—cons L. 78
4.5 GraphProblems 82
46 @@SetsasTerms. e 84
4.7 Q@ Semantics of Interpreted Functions 85
4.8 (@ Q@ Compilation of Expressions and Lists 87
4.9 @ Unification of Interpreted Functions 89
Saying No 91
5.1 Negative Information e e 92
5.2 Stratificationo 94
5.3 Semantics of Admissible Programs 97
5.4 @@ Declarative Semantics 99
5.5 @@ Local Stratification. 101
56 @@ Power of Stratified Negation 102
57 Q Inflationary Semantics 102
58 @@ RuleAlgebra 103
59 @@ Immerman’sResult - 104
Taking Collections 105
6.1 A Special Evaluable Function—scons 106

6.1.1 Unificationof Set Terms 108
6.2 The Equality Predicate Revisited 111

6.2.1 Comparisonof Set Terms 112

viil

6.2.2 Programs with Enumerated Set Terms
6.3 Grouped Sets

6.4 Stratification of Grouping Rules.
6.5 Set Operations
6.5.1 Set Membership
6.5.2 Subset Relation.
6.5.3 Set difference, intersection, and union
6.5.4 The Powerset Predicate S
6.6 (@@ Semantics of Admissible Programs
6.7 OO Compilationof Set Terms
6.8 @O Negationby- Grouping
6.9 @@ The Shmueli-NaqviResult
6.10 @@ Minimalityof Models

Making Changes

7.1 Update Operations S
7.2 Meaning and Truth of Predicates
7.3 Declarative Semantics of Programs

7.4 Constructive Semantics of Legal Programs
75 @O Syntaxof Programs

7.6 Q@ Semantics of Programs
Giving Orders '
8.1 Church-Rosser Property of Programs
8.2 Compound Predicates
8.3 * Blue-blooded Frenchman Revisited
8.4 Meaning of Compound Predicates
8.5 Stratification of Programs
86 Semanticsof Programs
" 8.6.1 Declarative Semantics
8.7 Constructive Semantics
88 (@ Semantics of Predicates

8.9 @@ Church-Rosser Property (CRP) e
8.10 @@ Power of Procedural Additions

Choosing and Aggregating

9.1 Choice . . . o i i e e e e e e e e e e
9.1.1 Informal Introduction

9.2 Aggregate Operations
9.2.1 The Interval Relation
9.2.2 A Case Study: Topological Sorting

ix

9.3 @@ Semantics of Choice T 194

10 Running L0 L Programs 199
10.1 LPL Program Files 200
10.2 The Schera File 202

10.2.1 Schema Relation 202
10.2.2 Type Definition Relation 203
10.2.3 Relation Declaration 205
10.24 NameRelation 205
10.25 Key Relation 206
10.2.6 Attributes with Function Symbols 206
10.3 Named Arguments 207

A Computer Science Genealogy ’ 213
A.1 Genealogical Relationships 213
A.2 TheBase Relation 220

B Data Dredging 231
B.1 The Convoy Problem 231

B.1.1 Lumpiness. 232
B.1.2 Succession vttt e e e e 233
B.13 Overlap e e 233
B.2 Convoys v v i i e e e e e 234
B.3 The LDL Program, 234

C Inventory Control 239
C.1 TheBaseRelations 239
C.2 The LDL Program i v v v i i i i vt i 241

C.2.1 Finding the Raw Materials of a Product 241
C.2.2 Suggesting Suppliers 243
C.2.3 MakingaSale e e e e e e 247

D Resource Allocation and Deallocation 251
D.1 The Shuttle Mission Problem 251
D.2 TheBaseRelations 252
D.3 The LOL Program i v v vt i ittt e 254

E [DL Syntax 265

Bibliography 271

List of Programs

2.1 Facts. e e 19
2.2 Murder. e e e e e e e e 24
2.3 Non-first-order program.00 25
2.4 First-order program.o 25
2.5 Complexobjects. SRR 26
2.6 Program with unground facts. 33
3.1 Transitiveclosure-1. 47
3.2 Ancestor-1. e e e 47
083 Ancestor-2. L i e e e e e e e e e 48
34 Common.ancestor. v v vt v oo 49
3.5 Samegeneration-1. 51
3.6 Same generation-2. 52
3.7 Blue-blooded frenchman-1. 52
3.8 Blue-blooded frenchman-2. 53
3.9 ANCEStOr-2.t e e e e e e e e e e e e e e 54
3.10 Naive bottom-up model of execution. 54
3.11 Seminaive bottom-up model of execution. 56
4.1 Interpreted functions-1. 69
4.2 Interpreted functions-2. L 69
4.3 Interpreted functions-3. DRV 70
4.4 Arithmetic expressions asterms. 71
45 SLRiNgs. o i 71
4.6 Equality on first-order terms. 73
4.7 Equality on arithmetic expressions. 74
4.8 Equality on composite terms. 74
4.9 Assignment. 76
4.10 Approximating stored events in a relffion. 78
4.11 List membership. 80
412 Append. e 80
413 Nalve TeVEISe. . . . v v v et e et e e e e 82

xix

4.14
4.15
4.16
4.17
4.18
4.19
4.20
5.1
5.2
5.3
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
7.1
7.2
7.3
74
7.5
76
7.7
7.8
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11

Less nalve reverse.o e 82

Palindrome. L o L 82
Distances between pairs of nodes in a gkaph. 83
Pathsinagraph. 83
Cycledetection., 84
Weighted paths in agraph. e e 84
Magic transformation for the list member program. 89
Inadmissible program. 95
Admissible program. 95
Exclusive ancestors. Lo 0oL, 96
Facts over enumerated sets 108
Setqueries e e 110
Equality under set terms e e e 111
Assignment under set terms 112
Equality on compositeterms 112
Team selection 115
Grouping of suppliers with parts 118
Capture problem 120
Set membership e e e e 122
Subset e 122
Set union throughrules 124
Update predicates 136
Transfer employees 138
Fireemployees o ... 138
Randomnumbers 139
Increase salaries. 140
Program without updates 148
Program withupdates 149
Top-down evaluation 150
Increase salaries-1 e 157
Increase salaries~2 158
Composition-1 e 161
Conditional-operator 162
Conditional-operator-2, 162
Conditionalupdates, 163
Iteration e 164
Simulating universal quantificationinrules 166
Declarativemodel-1 172
Declarativemodel-2 e e e 173
Top-down evaluation 174

XX

