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INTRODUCTION

The world of signal processing is today in a period of rapid revolutionary growth.
The soon-to-come capability to put over a million transistors on a single inte-
grated-circuit chip opens up a frontier of advanced highly parallel architectures.
The design of configurations of large arrays of processing elements with intercon-
nections and control structures optimized for efficient arithmetic computation is an
extremely active research area. These developments in advanced architectures
have in turn challenged mathematicians to develop more efficient stable parallel
algorithms. This flurry of activity is all to the benefit of systems engineers who soon
will no longer have to discard the preferred algorithmic solution to their problem
due to lack of computational capability.

Highly parallel processing has long been the exclusive domain of optical signal
processing technology. The optical community has impressively responded to this
“invasion of territory”” with techniques for performing advanced linear algebra

operations with digital precision, yet which take full advantage of the two-dimen-
sional parallelism of optics.

In organizing this year’s Real Time Signal Processing conference, emphasis was
placed on the algorithms and architectures for parallel implementation of matrix
operations. Matrix algorithms tend to provide increased performance by permitting
more realistic modeling of the signal processing problem and incorporation of prior
knowledge concerning signal and/ or noise distribution. Systolic architectures are
well matched to efficiently implementing these algorithms due to their modular
parallelism, local interconnects, and regular data flow.

Highlights of the papers on recent algorithmic developments include (a} a parallel
approach to recursively updated least-squares solutions which avoids numerical
instability without requiring column pivoting, (b) algorithms for partitioning the
singular value decomposition when the matrix size is larger than the processor-
array size, and (c) algorithms for the parallel computation of the generalized
singular value decomposition by a combination of simple systolic architectures.

Discussion of electronic impiementation issues ranges from the design of a bit-
level systolic-array chip to the completion of the 16,384-element Massively Parallel
Processor. A novel concept for designing fault tolerance into systolic processors
looks extremely promising. After an overview of electro-optical and acousto-opti-
cal implementations of systolic processors, methods for optically performing digital
operations and advanced matrix decompositions are presented.

| wish to thank those authors and co-authors who contributed to the program, as
well as the co-chairmen, particularly my colleague Jeffrey M. Speiser, who con-
tributed their time and expertise in organizing and implementing the conference.

Keith Bromley
U.S. Naval Ocean Systems Center
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A review of signal processing with systolic arrays

J. M, Speiser
H. J. Whitehouse

Naval Ocean Systems Center
San Diego, CA 92152

Abstract

This paper reviews recent developments in signal processing and surveys recent progress in parallel
processing algorithms and architectures for their real-time implementation.

It has previously been shownl—2 that the major computational requirements for many important real-time
signal processing tasks can be reduced to a common set of basic matrix operations including matrix-vector
multiplication, matrix-matrix multiplication and addition, matrix inversion, solution of systems of linear
equations, least squares approximate solution of linear systems, eigensystem solution, generalized eigen-
systems solution, and singular value decomposition (SVD) of matrices. To this list, we would now add the
generalized singular value decompositions of Van Loan3:4 and Paige-Saunders-.

The first five matrix operations listed above may be computed non-iteratively, and systolic array
architectures and algorithms are available which provide modular parallelism, local interconnects, regular
data flow, and high efficiency, with the efficiency essentially constant as the parallelism is increased®-8,

Parallel computation of eigensystems, generalized eigensystems, the singular value decomposition, and the
generalized singular value decomposition is more difficult, since the computation is necessarily iterative,
and it is difficult to utilize only local communication between processing elements while maintaining high
efficiency. Algorithms for the latter problems are therefore still the subject of intensive research.

Introduction

Digital signal processing architectures underwent a revolutionary change in the mid-1960's with the
development of the dedicated FFT processor, followed by an evolutionary change as further flexibility was
added in the more general array processor. The requirements of modern signal processing together with the
availability of VLSI/VHSIC technology are leading to another revolutionary change in signal processing

architectures: the systolic® and wavefront? cellular processors with vector and matrix parallelism for
matrix operations.

Signal Processing Operations

Much of present day signal processing is based on assumptions of wide-sense stationarity for noise and
random signals, together with linear, time-invariant models for signal propagation. Since sinusoids are the
eigenfunctions of shift-invariant kernels, the Fourier transform is important both for implementing convolu-
tions and providing eigensystem expansions for spectrum analysis.

Recent signal processing algorithms tend to incorporate additional prior information concerning the signal
structure and more realistic non-stationary noise models. This more realistic modelling will gererally pro-
vide improved performance at the expense of a greater computational load, Typical examples are algorithms
for spectrum analysislo, adaptive cancellation of noise and interference-!, and beamforming. Maximum
entropy spectrum analysis provides improved resolution compared to classical windowed spectrum analysis,
when an all-pole spectral model is applicable, but requires solution of a linear prediction problem. Adag—
tive cancellation of noise or interference by direct least squares techniques provides faster convergence 1,
and hence better tracking behavior than gradient based adaptive filtering, but requires the orthogonal
triangularizafion of a matrix or algorithms of comparable complexity. Recent beamforming/direction finding
techniques provide improved resolution by incorporating a spatial multiple point source model for the signals,
but re?uire the solution of an eigensystem or generalized eigensystem problem at each resolved temporal fre-
quency 3-15 The common trend in these and many other recent signal processing algorithms is their extensive
utilization of linear algebra operations, both conceptually and computationally. For the conventional com-
puter, there are available libraries of high quality (robust, numerically stable) numerical linear algebra
software: EISPACKI® for eigensystems problems, and LINPACKL7 for linear equation solution and least squares
problems. Real time signal processing will increasingly require the parallel hardware equivalent of LINPACK
and EISPACK, together with the more recent generalized singular value decompositions of Van Loan3:4 and
Paige—Saunderss. Signal processing algorithms frequently require the solution of the eigensystem of an
estimated covariance matrix, where the covariance matrix is estimated as the product of a data matrix and
its transpose. Roundoff error in the formation of this matrix product can cause a significant, irreversible
loss of accuracy. The computational wordlength requirement for such a problem can be reduced by about a
factor of two by solving the eigensystems problem indirectly via computing the singular value decomposition
of the data matrix. This is similar to the improvement in solving least squares problems via orthogonal
triangularization of the data matrix, rather than forming the Gauss normal equationsle’lz. The "MUSIC"
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high resolution direction finding algorithm of R. Schmidel3 requires the solution of a generalized eigensystem
involving two estimated covariance matrices. For such computations, the generalized singular value decomposi-

tions of Van Loan and Paige-Saunders, permit a similar reduction in computational word length by applying a
reduction directly to the data matrices.

Parallel Architectures

For applications in which the sampling rate approaches the computational cycle time, parallel architectures
are required for real-time implementation of tasks requiring a number of operations proportional to the square
or the cube of the number of points per data block, such as typical matrix operationsl9. Representative
parallel architectures include the digital tapped delay line transversal filter, the array processor, the bus
organized multiprocessor, and the systolic array®:7. This paper emphasizes the systolic array because of its
promising combination of characteristics for utilizing VLSI/VHSIC technology for real-time signal processing:
modular parallelism with throughput directly proportional to the number of cells, simple control, synchronous
data flow, local interconnects, and sufficient versatility for implementing the matrix operations needed for
signal processing. The authors view the systolic array as an adjunct to the general purpose computer and the
array processor rather than as a replacement for either, since the general purpose computer excels in unstruc-
tured computation and decision-making and the array processor excels in fast Fourier transform computation.

Systolic Arrays

The systolic array6, introduced by H.T. Kung, is a regular geometric array of identical or nearly identical
computational cells with common timing and control and synchronous data flow. Representative systolic archi-
tectures are shown in Fig. 1 for a variety of matrix computations. Although systolic arrays have also been
proposed for sorting, searching, and coding operations6, this paper will only address matrix computations
for signal processing. Systolic arrays may be viewed as distributed, space-time implementations of recursion
relations. Occasionally the operation required to initiate or terminate a set of recursions will be slightly
different from the intermediate recursive steps, necessitating one or more boundary cells which differ from
the interior cells of the array. For example, the linear systolic array shown in Fig. 1 may be used without
an exceptional boundary cell to perform matrix-vector multiplication using only scalar multiplications and
additions20, However, the solution of triangular linear systems of equations by back substitution also re-
quires one division per equation, and therefore an exceptional cell with division capability is then required
at one end of the array20. sSimilarly, the simple hexagonal array in Fig. 1 may be used for the multiplication
of banded matrices, but must be augmented by an exceptional cell with division capability for use in factoring
banded matrices into a product of lower and upper triangular matrices20., These architectures are particularly
attractive when the matrices have only a few bands occupied about the main diagonal. For the dense matrices
more commonly encountered in signal processing applications,_a rectangular systolic array called the engage-
ment processor provides more efficient matrix multiplication7. The systolic architectures described so far
are based primarily on multiplications and additions. An important class of methods for the high accuracy
solution of the linear least squares problem reguire the factorization of the data matrix into the product of
an orthogonal matrix and a triangular matrixl2,21, Thig may be performed by the triangular systolic array
shown at the right side of Fig. 18, This array implements Givens' rotations in its interior cells, so the
fundamental operation here is replacing a pair of rows by a pair of linear combinations of the two rows. The
triangular systolic array for orthogonal-triangular factorization may be combined with a linear array for
triangular backsubstitution to solve the least squares problem of finding the vector x which minimizes the
norm of Ax~y. In many adaptive noise cancellation or adaptive interference cancellation applications, it is
not necessary to find the optimum weight vector explicitly, since all that fis ultimately needed is the resi-
dual Ax-y corresponding to the optimum weight vector. In this case, McWhirter has shown that the backsubsti-
tution may be avoideda, Avoiding the backsubstitution has two important consequences. It not only permits

a reduction in the amount of hardware needed, but it also allows one to guarantee numerical stability of the
algorithm without introducing column pivoting.

In all of the above systolic architectures, the fraction of the cells performing useful computations at any
time is independent of the size of the array, so constant efficiency may be maintained as additional cells are
added to increase throughput. It has also been shown that for the operations of matrix multiplication and
matrix inversion, constant efficiency may be maintained when a large matrix is partitioned to fit on a small
systolic array, if memory is provided, conceptually orthogonal to the plane of the array, so that submatrices
may be stored or loaded in a single memory cycle time’/. An inner product is unchanged by a cyclic permutation
of the products to be summed. This idea can be used to provide a matrix multiplication using an NxN enhanced

engagement processor in such a way that all of the cells are active all of the time - a result ordinarily
achieved only when pipelining is possible’.

Systolic Hardware Development

In order to explore the hardware potential of systolic arrays, TRW/ESL has developed a processor called the
Phoenix which incorporates 28 of the TRW fixed point multiplier/accumulators in a linear systolic array?2.
This processor has a throughput of up to 200 million 16 bit fixed point operations per second, and has
been used to provide two-dimensional finite impulse response filters for image processing. In order to eval-
uate systolic algorithms and architectures, the Naval Ocean Sggte

m Center has developed a reconfigurable one/
two dimensional systolic array with 64 processing elements?3- The individual processing elements use com-

mercial VLSI components and include a general purpose microprocessor, a floating point arithmetic unit, RAM,
and ROM in each cell. This systolic testbed processor may be reconfigured under software control to perform

3
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Figure 1. Systolic array solutions
as a rectangular, hexagonal, or linear systolic array, or as 8 small linear systolic arrays. It was designed
primarily for flexibility in algorithm evaluation, and the cells are much slower than those used in the TRW/
ESL Phoenix processor or ones which could be implemented in a future dedicated VLSI design.

Current Systolic Research

Current research on systolic algorithms and architectures for matrix computation is directed primarily
toward the singular value decomposition and the symmetric eigensystem problem. Both computations are neces-
sarily iterative for general matrices larger than four by four. The simplest systolic approach to eigen-
system computation would be to use the power method, since it requires primarily matrix-vector multiplications.
However, this method is not being actively pursued because of its severe numerical difficulties for closely
spaced eigenvalues and small eigenvalues and their associated eigenvectors. Modern, numerically stable
algorithms for the symmetric eigenvalue problem and the singular value decomposition are based on real
orthogonal transformations are used in the QR algorithm26 and the Jacobi algorithm27. For the singular value
decomposition, one sided orthogonal transformations are used in the Nash-Hestenes method, and a modification
of the QR eigensystem algorithm is used in the method of Golub and Reinsch28, 1In trying to find systolic
parallelizations of these algorithms, the difficulty 1is not so much in providing a parallel implementation
of the required transformations as in computing the transformation to be used at each stage of the algorithm.
The QR type algorithms proceed in two stages. The first is a preliminary reduction to tridiagonal form for
the symmetric eigenvalue problem or a reduction to bidiagonal form for the singular value decomposition.
Successive transformations then perform a reduction to diagonal form. This approach has been investigated at
Pennsylvania State University29 and at Stanford University 0, The principal difficulty is that of performing
the reduction to tridiagonal form for the eigensystem problem or to bidiagonal form for the SVD in time pro-
portional to N using about N squared processors. The Jacobi algorithms for the symmetric eigensystem problem
and the corresponding one-sided orthogonalization algorithm521 for the SVD lend themselves readily to vector
parallelism31. Systolic versions with both matrix and vector parallelism are being studied at Cornell Uni-
versity. The initial method using matrix garallelism attempted to compute all N(N-1)/2 rotations for a sweep
in advance, and then perform the rotations32. The principal difficulty with this approach 1s that rotations
proceed simultaneously in several planes, and the classical methods and corresponding proofs of .convergence
are designed for computing optimal or nearly optimal rotation choices in one plane at a time. In effect, some
of the rotations are performed using old information to compute the rotation angles. New methods are needed
to understand the convergence behavior of such algorithms. Two alternative systolic architectures avoid the
use of old data in computing the rotations. One uses vector parallelism to implement in exact Nash-Hestenes
method with a modified order of performing the rotations33. The data movements for this architecture are
shown in Fig. 2. A second method uses two-sided orthogonalization to permit computation of the SVD in
0(n log n) time using O0(n¢) processors>®.

Open Problems

Several issues are still not well understood. Signal processing tasks frequently require repeatedly
solving the same numerical problem with updated matrices as new observations are added. Although efficient
recursive updating is possible for least squares solution, there remains a need for similarly efficient
updating of eigensystem solutions and singular value decompositions. A second difficult issue is the choice
of a control structure for a systolic array. For a fixed type of computation on matrices matched to the
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Figure 2. Data movement in the Brent-Luk linear systolic array for singular value
decomposition via one-sided orthogonalization

size of the array, the control structure is minimal, but the control needed grows rapidly for partitioned
computations or reconfigurable use of the processors.

Conclusions

As a result of the concurrent advances in numerical linear algebra, parallel architectures for computation,
and VLSI hardware implementations, it is less frequently necessary for the signal processing engineer to use
suboptimal computations when optimal computations will provide improved performance. Direct least squares min-
imization and iterative eigensystem calculation can be considered for future signal processing systems. The
use of the singular value decomposition (SVD) and the generalized SVD make possible the use of single preci-
sion computation in many applications where double precision computation was previously required. Althoughmuch
research still needs to be done in applying these new techniques to situations with time varying statistics,
it is clear that the ability to implement computational macros in silicon and to connect them together without
conflicts for access to resources will make possible many new and important advances in signal processing.
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Abstract

Linear Algebra (i.c., the algebra of vector spaces) provides widely used mathematical tools and
concepts which are today being considered for implementation in special compute architectures.
It seems that so many signal processing problems can be expressed and, more importantly,
implemented efficiently as a sequence of vector and matrix operations, that a signal processing
system with a capability for high speed linear algebra is necessary if the more advanced signal
processing algorithms are to be implemented to operate in real time. The purpose of this paper
is to support the notion that linear algebra is a sound basis for important signal processing
system implementations and, further, to suggest that multilinear algebra (i.c., the algebra
of vector, bivector, trivector, efc. spaces) offers an even broader set of signal processing “tools”.
Examples and ideas from direction finding and time series analysis are discussed.

§1. Introduction

Many physical problems in sonar, radar, seismic, efc. signal processing utilize the records of multiple sensors to estimate the
location of one or more sources of coherent energy—often assumed to be point source emitters. Typically, the sensor outputs contain
the source waveforms as modified in amplitude and phase by the medium between the sources and the array elements. Essentially
all of the geometric information is encoded in the set of pairwise cross correlations associated with the sensor outputs and arising

from the propagation of the directional wavefronts across the array. Estimating the source locations and the emission parameters
constitutes, in a general sense, spectral estimation.

Alternatively, a tapped delay line may be used to provide the multichannel version of a single channel time series. The
parameters of multiple cisoids (pole location, amplitude, and phase) may be estimated using the same mathematical as well as
algorithmic tools as in the direction finding(DF) or emitter location problem. This also is a problem in spectral estimation.

In the modern (e.g., high resolution) spectral analysis implementations, the predominant computations are vector dot
products, projections of vectors onto subspaces, and least squares estimates of subspaces. But, as we shall see, there is a vector
continuum (i.e., the “array manifold”) of very practical as well as theoretical use to the DF problem and there is at least one manifold
of importance consisting of a continuum of 2D-spaces (a bivector manifold) which permits the solution of DF for polarizationally
diverse antenna arrays. Ordinary vectors alone appear insufficient to treat the problem in all quite practical generality. The purpose
of this paper is to discuss the introduction of additional geometrical objects and the associated tools for dealing with them into the
general spectral analysis problem and in particular into the DF problem.

Specifically, we wish to show that wedge products between vectors yield useful bivectors, trivectors, etc. —graphically
interpretable but not representable in the same space as the original vectors since they are of a different dimensionality—which
permit a new viewpoint of the problem as well as new implementations and extensions of its solution.

Thus, the mathematics of spectral analysis applies to both temporal and spatial spectra, and the tools of multilinear algebra
can apply to both. However, there is a significant class of spectral analysis methods which will not be discussed here. To establish
the range of application, consider the general state variable approach with a difference (or differential) equation embodying known or
assumed structure in the observed data and an equation relating the vector of observations x to the state vector =.

Enyl = Fg, +u,

x, = Hz, + w,

There are two distinct types of “noise” associated with this model—the input noise u and the output or measurement noise w. Since
the inclusion of both types of noise is quite general and leads to implementations (e.g., the Kalman filter) which may be more costly
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than necessary, the quest for simplicity arises. We may simplify the model and perhaps, thereby, simplify implementations, by setting
either of the two noises to zero.!

Setting the measurement noise to zero by assumption leads to the approach known as autoregressive, moving average
(ARMA) modelling with its many variations, special cases, and alternatives, and descriptions—pole/zero modelling, Maximum Entropy
analysis, efc. . Speech is often modelled as the output of a linear system which is driven by (input) noise. Economic time series are
also often modelled as systems drivegp by random forces.

However, for data processing problems where the data disturbance is an additive noise, it would be more appropriate to set,
by assumption, the input noise to zero leaving free the output or measurement noise to account for the random component in the data.

Such a model should be more appropriate than the ARMA model for radio wave DF or sound wave DF as well as signals-plus-noise
processing problems.

Spectral analysis methods may be said to differ fundamentally depending on which noise-generating mechanism is included
in the model. We will be discussing models which include output or measurement noise and will not be considering other models.

The discussion is arranged to include a short geometric description of the mathematical objects known as multivectors
followed by examples of their use in two significant applications-oriented subdivisions of spectral analysis as follows.

(1) New Tools for Signal Processing
{a) Vector Spaces
{b) Multivector Spaces
(¢) exterior (or “wedge”) product between multivectors
(2) Signal Processing Examples
(a) The DF Problem
¢ The Signal Subspace
¢ The Array Manifold for scalar fields
o The Array Manifold for vector fields
(b) Time Series Analysis
¢ Pole location, Frequency Estimation
e Hilbert Transform, Multichannel Quadrature Generation
e Spectral Analysis, Fitting Data to a Constraint Manifold

§2. Multilinear Algebra and Multivectors

Multilinear algebra (or exterior algebra) is the algebra of p-vectors whereas linear algebra applies to “ordinary” or 1-vectors.
Actually, p-vectors are antisymmetric tensors of rank p so that a 2-vector could be represented as a square, antisymmetric matrix.
Because of the antisymmetry, only (I;' ) of the M? matrix elements are independent—only those with two unequal subscripts are
nonzero and, of those, half are the negatives of the other half. Perhaps more familiar to most readers, multivectors appear in line,
surface, and volume integrals in a way which may suggest their importance. From a discussion in |5}, the line integral

/ Adz + Bdy + Cdz
leads to the one-form

a = Adz + Bdy + Cdz

lMsny algorithms may already solve the problem where both noises are assumed gero even though the noise-free problem isn’t necessarily trivial. But some
algorithms will “work better” than others when data doesn’t adhere to the assumed noise-free conditions (f.e., they are more “robust”).



J‘"?e:/te_'

4
.,
by
3 b
%\ Dtl\ 3
€y Ao
AillRA 5 3,
1-1
iy &
L3
5e ey
.Z'I

Figure 1. Pictorial Example of Bivectors
suggesting that dz,dy and dz be thought of as unit vectors. The surface integral

/ / Pdydz + Qdzdz + Rdzdy
leads to the two-form

f = Pdydz + Qdzdz + Rdzdy
suggesting that dydz, dzdz and dzdy be thought of as unit bivectors. The volume integral

[ [ [ masta

o= Hdzdydz

leads to the three-form

suggesting that drdydz be thought of as a unit trivector. Since dzdy appears but dydr does not, there is a strong suggestion of
symmetry—or antisymmetry. The absence of dzdz favors antisymmetry which consists of the rules

dzdz =0 and dydrz = —dzdy

As it happens, the combinations of differentials do obey all of the properties of multivectors—line and surface integrals are “oriented”, ete.
—and we see that

dzdy & dz Ady and dxdydz & dz AdyAdz ete.

In Figure 1, the concept of unit bivectors is portrayed in the context of ordinary unit vectors. The example includes a 3-dimensional
coordinate system with three unit vectors e;, ez, es. In terms of these unit vectors, there are also three unit bivectors

ez =e; Aeg, e1s —e; Ae,, e =ez Aes

shown as unit areas in the principal planes of the coordinate axes. The components of a vector,e.g., by or by as shown, are found by
projecting the vectors onto the unit vectors in turn. The components of the bivector,viz., b; A bz are likewise found by projecting

the bivector onto the principal planes to determine the amounts of each unit bivector required to express the bivector within this
vector space.

Note that, in an M-dimensional vector space, there would be (%) unit bivectors and (') unit trivectors,efc. . Therefore,
although vectors, bivectors, trivectors, efc. can be viewed as geometric objects—lines, surfaces, volumes, etc. —the actual dimen-
sionality (i.e., the number of degrees of freedom required to specify) is not the same among them. Examples of vectors, bivectors,
and trivectors are given in Figure 2. Their numerical coordinate representations can be obtained as follows.
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Figure 2. Examples of Vectors, Bivectors, and Trivectors

Starting in a 4 dimensional vector space with vectors x, y and bivector z where

212

Z1 Y1 %13
__|%e __|¥2 __|#14
kY Y=lu| il P
7 4 224
284

The bivector 2 has gix components corresponding to the six unit bivectors arising as the four unit vectors are taken two at a time.
We can write the components of a bivector o as

@12 TiYz — T2
Q18 T1 41 T1Ys — Tz
Q14 T2 Y2 T1Ys — T4l

aiy = (X =$ = ==
K ( A y)‘! Qag T3 Ys ToYs — Z3Y2
(£27) T4 Y4 T2Y4 — T4Y2
Qg4 TaYs — Tals

The bivector a is shown as having six components expressed as the minors of the 4 by 2 matrix with columns x and y. (For discussion

and details, consult [6].) The subscripting for a wedge product between a bivector z and a vector x is shown in the calculation of the
components of the trivector 8.

B12s 212%8 + 72371 + 781 %2
Bite = (8 AX)isic = Brza| __ [212%4 + 224w + 2172
Bi34 218%4 + 23421 + 741 T8
B284 228%4 + 234%2 + 242T3

Although the subscript juggling needed to carry out a wedge product is not necessarily obvious (and certainly was not derived herein),
it is clearly something that can be done by a computer.

The geometric objects represented by multivectors have many interesting and geometrically interpretable properties. There
are even eigen multi-vectors and -values which are closely tied to eigen vectors and values. But we shall now discuss examples of
signal processing which can make use of these tools in description and perhaps algorithmic implementation.

§3. The DF Problem

The direction finding problem is portrayed in Figure 3. There are M sensors with arbitrary directional response characteristics
(amplitude, phase, and polarization). The idea is to make use of any structure in the received vectors of voltages that is due to the

sources being point sources. In time series analysis, this is equivalent to the structure arising because of the points located on the z
plane (or 8 plane) called poles which characterize the noise-free data.

We shall see that the generality of the problem statement does not detract from its usefulness. On the contrary, restricting
the problem to uniform collinear arrays, omnidirectional antenna elements, polarizationally non-diverse arrays (e.g., parallel dipoles),

etc. does not provide any conceptual or performance advantages—the general concepts are revealing and disarmingly simple. The
advantages, if any, would be simplicity in implementation.

3.1 The Signal Subspace Approach to DF

The following description of a completely general DF algorithm is unique in that it is virtually free of equations yet is more
than just believable—it is convincing. There are two geometric objects of interest involved and the description will take the form of
a “thought experiment”. The two objects of interest are the signal subspace and the array manifold. We shall see that the complete
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Figure 8. The General DF Problem

solution to the DF problem requires the intersection of these two and that estimates of all parameters of the multiple sources present
are made available.

3.2 The Signal Subspace

Let us regard the (complex) voltage received on an array of M completely arbitrary antennas as a (complex) vector function
of time x(t). In our minds eye, we may “watch” the vector in M space as in Figure 4 in an attempt to ferret out useful patterns
and for structure useful in the DF problem. As we shall discover, there is a great deal of structure to perceive even though the array
is completely arbitrary in the positions, orientations, and responses of the individual antennas.

First, consider that if only one (narrowband) point source were present (or, equivalently, if it were radiating strongly enough
to predominate over all other sources as well as noise), the received vector of voltages would, at any point in time, be a mere scaled
version of what is known as the steering vector in common DF terminology. Corresponding to each particular direction of arrival
(DOA) in physical space, there is a steering vector, sometimes referred to as a mode vector or a DOA vector. (In order that the

steering vector a(d, ) corresponding to the DOA with elevation § and azimuth ¢ be unique, let us normalize it so that its squared
length is M and the phase of a selected element, say the first, is zero.)

For this case of a single source, the observed vector of voltages x(t) will change in time but it will always be expressible
as an “amount” of a{f, ¢) —its direction in M space does not change as long as the source location does not change. The received

vector x(t) is confined as in Figure 5 to the one dimensional subspace having, as a basis vector, the DOA vector a(0, ¢) corresponding
to the DOA of the source.

Thus, the actual source signal can be directly identified with the (complex) magnitude of the DOA basis vector a(f, ¢) being
observed. Let us refer to the one dimensional subspace with a(0, ¢) as its basis vector as the signal subspace reachable by the arbitrary
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