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Preface

Some ten years ago, when completing with J.-B. Zuber a previous
text on Quantum Field Theory, the senior author was painfully”
aware that little mention was made that methods in statistical
physics and Euclidean field theory were coming closer and closer,
with common tools based on the use of path integrals and the
renormalization group giving insights on global structures. It was
partly to fill this gap that the present book was undertaken. Alas,
over the five years that it took to come to life, both subjects have
undergone a new evolution. Disordered media, growth patterns,
complex dynamical systems or spin glasses are among the new
important topics in statistical mechanics, while superstring theory
has turned to the study of extended systems, Kaluza-Klein
theories in higher dimensions, anticommuting coordinates ... in
an attempt to formulate a unified model including all known
interactions.  New and sophisticated techniques have invaded
statistical physics, ranging from algebraic methods in integrable
systems to fractal sets or random surfaces. Powerful computers
or special devices provide “experimental” means for a new brand
of theoretical physicists. In quantum field theory, applications of
differential topology, geometry, Riemannian manifolds, operator
theory ... require a deeper background in mathematics and a
knowledge of some of its most recent developments. As a result,
when surveying what has been included in the present volume
in an attempt to uncover the basic unity of these subjects, the
authors have the same unsatisfactory feeling of not being able to
bring the reader really up to date. It is presumably the fate of such
endeavours to always come short of accomplishing their purpose.
With these shortcomings fully admitted, we have tried to
present to the reader an overview of the main themes which justify
the title “Statistical field theory.” This interpretation of Euclidean
field theory offers a new language, effective computing means, as
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xii Preface

well as a natural and consistent short-distance cutoff. In other
words, it allows one to give a global meaning to path integrals, to
discover possible anomalies arising from integration measures, or
to understand in simple terms systems with redundant variables
such as gauge models. The theory of continuous phase transitions
provides a bridge between probabilistic mechanics and continuous
field theory, using the renormalization group to filter out relevant
operators and interactions. Many authors contributed to these
views, culminating in the work of K. Wilson and his collaborators
and followers, which promoted the renormalization group as a
universal tool to analyse the large-distance behaviour. It still
retains its value, while new developments take place, particularly
with conformal, or local scale invariance coming to prominence in
the study of two-dimensional systems.

The content of this book is naturally divided into two parts. The
first six chapters describe in succession Brownian motion, its anti-
commutative counterpart in the guise of Onsager’s solution to the
two-dimensional Ising model, the mean-field or Landau approxi-
mation, scaling ideas exemplified by the Kosterlitz-Thouless the-
ory for the XY -transition, the continuous renormalization group
applied to the standard ¢* theary, the simplest typical case, and
lattice gauge theory as an attempt to understand quark confine-
ment in chromodynamics.

The next five chapters (in volume 2) cover more diverse sub jects.
We give an introduction to strong coupling expansions and various
means of analyzing them. We then briefly introduce Monte
Carlo simulations with an emphasis on the applications to gauge
theories. Next we turn to the significant advances in two-
dimensional conformal field theory, with a lengthy presentation
of the methods as well as early results. A chapter on simple
disordered systems includes sample applications of fermionic
techniques with no pretence at completeness. The final chapter is
devoted to random geometry and an introduction to the Polyakov
model of random surfaces which illustrates the relations between
string theory and statistical physics.

At the price of being perhaps a bit repetitive, we have tried in
the first part to introduce the subject in an elementary fashion.
It is, however, assumed that the reader has some familiarity with
thermodynamics as well as with quantum field theory. We often
switch from one to the other interpretation, assuming that it will
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not be disturbing once it is realized that the exponential of the
action plays the role of the Boltzmann-Gibbs statistical weight.
The last chapters cover subjects still in fast evolution.

Many important subjects could unfortunately not be covered.
In random order they include dynamical critical phenomena,
renormalization of o-models or non-Abelian gauge fields except

for a mention of lowest order results, topological aspects, clas-
sical solutions, instantons, monopoles, anomalies (except for the
conformal one). Integrable systems are missing apart from the
two-dimensional Ising model. Quantum gravity ¢ la Regge is only
mentioned. The list could, of course, be made much longer. Our
involvement in some of the topics has certainly produced obvious
biases and overemphases in certain instances. We have tried, as
much as possible, to correct for these defects as well as for the
numerous omissions by including at the end of each chapter a
section entitled “Notes.” Here we quote our sources, original arti-
cles, reviews, books and complementary material. These notes are
purposely scattered through the volume, as we are sure that our
quotations are very incomplete. A fair bibliography in such a large
domain is beyond human capacities. Should any one feel that his
or her work has not been reported or not properly mentioned, he
or she is certainly right and we present our most sincere apologies.
On the other hand we did not hesitate to use and sometimes fol-
low very closely some articles or reviews which served our purpose.
For instance chapter 5 is built around the definitive contributions
of E. Brézin, J.-C. Le Guillou, J. Zinn-Justin and G. Parisi. Ex-
cept for some further elaboration by the authors themselves, it
was futile to try to improve on their work. Further examples are
mentioned in the notes. It is the very nature of a survey such as
this one to be inspired largely by other people’s works. We hope
that we did not distort or caricature them.

A book might give the illusion, especially to students, that some
knowledge has become definitive and that the authors understand
every part of it. This is a completely false view. No one can really
fully master even his own subject, and this is luckily a source of
progress. It is in the process of learning, of objecting, of finding
misprints and errors, in rediscovering for oneself, that one gets
the real benefits. It is very likely that, in spite of our care, many
errors have crept in here and there. We welcome gladly comments
and criticisms.



xiv Preface

It was very hard to keep uniform notation throughout the text,
even sometimes in the same chapter. This is a standard difficulty,
especially when traditional notation in a given domain comes into
conflict with those used in another one, and a compromise is
necessary. We hope that this will not be a source of confusion
for the reader.

We have added appendices which generally gather material
in very concise form. They should be supplemented by further
reading. For instance appendix C of chapter 9 is obviously.
insufficient to describe finite and infinite Lie algebras and their
representations. This appendix is, rather, meant to induce the
interested reader to study the subject further. This is also
the nature of several sections where the degree of mathematical
sophistication seems to increase beyond the standard background,
reflecting recent trends. It was felt difficult to omit these
developments but also impossible to give a proper complete
introduction.

Included in small type here and there are comments, exercises
and short complements ... It was felt inappropriate to develop a
scholarly set of problems. In this respect the whole text can be
read as a problem book. '

One of (e “heroes” of the whole subject of statistical physics,
in one guise or another, is still to this day our old friend the
Ising model. We keep a few bottles of good old French wine for
the lucky person who solves it in three dimensions. It would seem
appropriate to create in the theoretical physics community a prize
for its solution, analogous to the one founded at the beginning of
the century for the proof of Fermat’s theorem. Both subjects have
a similar flavour, being elementary to formulate. While it is to be
presumed that the answer itself is to a large extent inessential,
they motivated creative efforts (and still do) which go largely
beyond the goal of solving the problem itself.

Among the many books which either overlap or amply comple-
ment the present one, the foremost are of course those in the series
edited by C. Domb and M.S. Green and now J. Lebowitz, entitled
Phase transitions and critical phenomena and published through
the years by Academic Press (New York). We freely refer to this
series in the notes. Let us also quote here a few others, again with-
out pretence at exhaustivity. On the statistical side, K. Huang,
Statistical mechanics, Wiley, New York (1963); H.E. Stanley, In-
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troduction to phase transitions and critical phenomena, Oxford
University Press (1971); S.K. Ma, Modern theory of critical phe-
nomena, Benjamin, New York (1976) and Statistical mechanics,
World Scientific, Singapore (1985); D.J. Amit, Field theory, the
renormalization group and critical phenomena, 2nd edition, World
Scientific, Singapore (1984).

Books on the path integral approach to field theory are by
now numerous. Among them, the classical one is R.P. Feynman
and A.R. Hibbs, Quantum mechanics and path integrals, McGraw
Hill, New York (1965). Further aspects are covered in C. Itzyk-
son and J.-B. Zuber, Quantum field theory, McGraw Hill, New
York (1980); P. Ramond, Field theory, ¢ modern primer, Ben-
jamin/Cummings, Reading, Mass. (1981); J. Glimm and A. Jaffe,
Quantum physics, Springer, New York (1981). To fill some gaps
on other developments in field theory, see S. Coleman, Aspects
of symmetries, Cambridge University Press (1985); S. Treiman,
R. Jackiw, B. Zumino, E. Witten Current algebra and anomalies,
World Scientific, Singapore (1985), and to learn about integrable
systems, R. Baxter Eractly solved models in statistical mechanics,
Academic Press, New York (1982), and M. Gaudin La fonction
d’onde de Bethe, Masson, Paris (1983). Of course, many more
books are mentioned in the notes. We are also aware that several
important texts are either in preparation or will appear in the
near future.

Our knowledge of English remains to this day very primitive
and we apologize for our cumbersome use of a foreign language.
This lack of fluency has prevented us of any attempt at humour
which would have been sometimes more than welcome.

We would have never undertaken writing, were it not for the
teaching opportunities that we were given by several universities
and schools. One of the authors (C.1.) is grateful to his colleagues
from the “Troisieme cycle de Suisse Romande” in Lausanne and
Geneva, from the “Département de Physique de 1'Université de
Louvain La Neuve” and from the “Troisiéme cycle de physique
théorique” in Marseille for giving him the possibility to teach
what became parts of this text, as well as to the staff of these
institutions for providing secretarial help in preparing a French
unpublished manuscript. The other author (J.M.D.) acknowledges
similar opportunities afforded by the “Troisiéme cycle de physique
théorique” in Paris.
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The final and certainly most pleasant duty is, of course, to
thank all those, friends, colleagues, collaborators, students and
secretaries who have helped us through the years. A complete list
should include all the members of the Saclay “Service de physique
théorique”, together with its numerous visitors and the members
of the many departments, institutions and meetings which offered
us generous hospitality and stimulation. ’

Particular thanks go to our very long 'time fnends and col-
leagues R. Balian, M. Bander, M. Bauer, D. Bessis, E. Brézin,
A. Cappelli, A. Coste, F. David, J. des Cloizeaux, C. De Domini-
cis, E. Gardner, M. Gaudin, B. Derrida, J.-M. Luck, A. Morel,
P. Moussa, H. Orland, G. Parisi, Y. Pomeau, R. Lacaze, H. Saleur,
R. Stora, J. Zinn-Justin, and J.-B. Zuber for friendly collabora-
tions, endless discussions and generous advice. The final form of
the manuscript owes a great deal to Dany Bunel. Let her receive
here our warmest thanks for her tireless help. We are also very
grateful to M. Porneuf and to the documentation staff, M. Féron,
J. Delouvrier and F. Chétivaux.

. Last but not least, we thank the Commissariat & ’Energie
Atomique, the Institut de Recherche Fondamentale and the
Service de Physique Théorique for their support.

Saclay, 1988
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7
DIAGRAMMATIC METHODS

This chapter is devoted to technicalities related to various expan-
sions already encountered in volume 1, mostly those that derive
from the original lattice formulation of the models, be it high or
low temperature, strong coupling expansions and to some extent
those arising in the guise of Feynman diagrams in the continuous
framework. We shall not try to be exhaustive, but rather-illus-
trative, relying on the reader’s interest to investigate in greater
depth some aspects inadequately treated. Nor shall we try to
explore with great sophistication the vast domain of graph the-
ory. There are, however, a number of common features, mostly
of topological nature, which we would like to present as examples
of the diversity of what looks at first sight like straightforward
procedures.

7.1 General Techniques

7.1.1 Definitions and notations

Let a labelled graph G be a collection of v elements from a set
of indices, and ! pairs of such elements with possible duplications
(i.e. multiple links). We shall also interchangeably use the word
diagram instead of graph. This abstract object is represented by
v points (vertices) and ! links. Each vertex is labelled by its index.

The problem under consideration will define a set of admissible
graphs, with a corresponding weight w(G) (a real or complex
number) according to a well-defined set of rules. We wish to find
the sum of weights over all admissible graphs.

Possible constraints on the graphs may be

i) the ezclusion constraint, preventing two vertices from carrying
the same index '

405



406 7 Diagrammatic Methods

k ¢
(a) (b)

Fig. 1 (a) a labelled graph, (6) the corresponding free graph.

ii) simplicity when two vertices are joined by at most one link
(the graph in figure 1(a) is not simple).

Take for instance the straightforward high temperature expan-
sion of the Ising partition function

zZ=2"N Z ex;; ﬂZa‘aj

o ”
{oi=%1} (i5) (1)
— o—N
=2V 3T 3 |+ Z Pl
{oi==1} (ij) "ij=1

Expanding the products, keeping terms with a finite power of
B, and averaging over o; = %1, leads to a straightforward high
temperature series encountered in volume 1. The successive
contributions are associated with graphs defined as follows. A
graph has ny; . lines joining vertices ¢ and j. Isolated points are
not represented as vertices. Since only even powers of o; have
a nonvanishing unit average, admissible graphs have to obev the
following three rules :

i) a line can only join vertices indexed by neighbouring sites, and
we may think of the graph as drawn on the lattice,
i) an even number of links are incident on a vertex,
ili) two vertices have distinct labels (the exclusion constraint).

Given an admissible graph, its weight is obtained by associating
a factor B to each line, and dividing by the product H(, ) Tij
the order of the symmetry group of the graph under permutatlon
of equivalent links.

We can also write

Z= (cosh,B N Z H (1+0,0 -tanhﬂ) (2)

{oi=£1} (i5)
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which leads for Z/(cosh 3d)N to a different expansion. Admissible
graphs are simple with a factor tanh g for each link. Both series

are useful in applications.

Two graphs are isomorphic when a one-to-one correspondence
can be set among vertices and links preserving the incidence
relations. The difference lies therefore in the labels of the vertices.
Isomorphism leads to equivalence classes called free graphs and
denoted G. In a pictorial representation, vertices do not carry
indices anymore (fig. 1(b)). Conventionally, the corresponding
weight w(G) will be the average over the equivalent labelled
graphs. Call number of configurations n(G) the cardinal of the
equivalence class, then

Y. w(G) = n(G)w(G) ) 3)

Gi€G

This definition is useful whenever the weight of a graph is
independent of the labelling of its vertices. In any case, it allows
one to disentangle the part w(G) that is specific to the model, from
the geometry of the lattice, which yields n(G). The following two
sections will treat these problems separately.

The above definitions can be extended in various ways.

i) Vertices may be of several types.

ii) Links may have to be oriented.

iii) A generalization may be envisioned, where instead of dealing
with 0 and 1 dimensional simplices (vertices and links), one
may be required to consider higher dimensional elements (two
dimensional plaquettes in the gauge case).

iv) Indices may be compcund ones, and links may have to carry
indices at their extremities. '

This list is of course just indicative of possible extensions.

In some applications, the computation of correlations for
instance, a subset of vertices carries fixed indices. Equivalence
classes of such graphs will be called rooted graphs.

Two vertices x and ypon G are linked if they can be joined by a
path along links of the graph zz,, z,2,,..., 2,y. This provides again
an equivalence relation on vertices, and the corresponding classes
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(0) ®) I @

Fig. 2 (a) a tree (b) a graph with four loops (c) a graph with two articulation
points (d) a multiply connected graph. -

define the connected disjoint parts of the graph. A connected
graph has a unique connected part.

A cycle is a closed path of n links, and n vertices, all distinct,
starting and ending at the same vertex. A connected graph
without cycles is a tree (figure 2(a)). The number of loops in
a connected graph is the mirimum number of links whlch when
removed, leave a tree (figure 2(b)).

An articulation point (figure 2(c)) is such that its omission,
together with incident links, increases the number of connected
parts. It is therefore a vertex which appears on any path linking
certain pairs of vertices. In particular, on a tree, all vertices
but the external ones (joined to the graph by only one link) are
articulation points. A connected graph without articulation points
is a multiply connected graph: any two vertices belong to a cycle
and can therefore be linked by at least two totally distinct paths.

In terms of the following notation ,

vy, number of vertices with k incident links

v = Y, Uy, total number of vertices

[, number of links

b, number of loops

¢, number of connected parts
we have the relation

2A=Y ky, . @)
k

expressing that each link joins two vertices, thus twice the number
of links is equal to the sum over vertices weighted by the number



