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PREFACE

Ion-exchange processes can be used in place of or to simplify many of
the chemical operations that routinely confront the experimenter. Employ-
ment of these techniques has become so commonplace in the laboratory that
the advanced student or practicing investigator not well acquainted with
them is at a distinct disadvantage. The separation of like elements into
distinct groups or the separation of closely related species within a group,
concentration of a trace material, synthesis or degradation of compounds,
are only a few of the tasks easily performed with ion-exchange materials.
One does not have to be a specialist to practice with assurance the techniques
of ion exchange. Ordinary laboratory experience is all the background
training that is necessary for one to acquire the necessary skills for experi-
mentations with ion-exchange materials.

One purpose of this book is to encourage those investigators inexperi-
enced in the practice of ion-exchange methodology to adapt these time-saving
procedures to many of the chemical manipulations that are carried out in
the laboratory. It is intended also to serve as a “refresher”” source for those
who intermittently utilize ion-exchange methods.

Emphasis is placed on practical experimentation with ion-exchange
materials. However, to use these materials effectively, some knowledge of
theory is necessary. The amount of theory presented here is kept at a mini-
mum, and what is presented is considered as applying to the ideal case (just
as the gas laws apply to an ideal gas). It is not the purpose of this book to
render complete historical accounts or give complete bibliographies.
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Fundamentals of Ion Exchange

A. VERSATILITY OF ION-EXCHANGE MATERIALS

Many of the chemical manipulations routinely encountered in the labo-
ratory can be quickly and efficiently carried out by employing ion-exchange
materials. Some of these common operations are listed below.

Conversion of one salt to another

Desalting

Concentration

Removal of interfering ions prior to analytical determinations
Removal of ionic impurities from organic reagents

Rapid quantitative determination of ionic solute concentrations (e.g.,
standardization of analytical reagents)

. Catalysis

8. Fractionation or separation of both inorganic and organic ions by
chromatographic procedures

ANk =

3

As implied by their name and as inferred from the list of reactions given,
ion-exchange materials react ionically with other ions. Ion exchangers are
termed anionic or cationic depending upon whether they take up the negative
or the positive ions of a surrounding electrolyte, respectively.



2 Fundamentals of Ion Exchange

B. THE CHEMICAL NATURE OF ION EXCHANGERS

A variety of inorganic and organic substances have been used as ion
exchangers. For example, such natural products as proteins, celluloses, car-
bon, common clays, and various minerals contain mobile ions that will
exchange with other ions in a surrounding solution. However, these natural
substances have low exchange capacities and other unfavorable chemical and
physical properties that limit their practical utilization as ion-exchange sub-
stances. Consequently, before 1935, the technique of ion exchange was not
widely used as a unit process either in the laboratory or on an industrial scale.

Modern ion-exchange technology began in 1935 with the now classical
investigations of Adams and Holmes (1) who discovered that synthetic organ-
ic polymers, more commonly referred to as resins, are capable of exchanging
ions. These synthetic resins are solids that may be pictured structurally as
being composed of two parts. The fundamental framework of these ion-
exchange substances is an elastic, three-dimensional hydrocarbon network or
matrix; the second part of their structure is hydrophilic in nature and consists
of ionizable groups (either acidic or basic) chemically bonded to the hydro-
carbon framework. The organic network is fixed, is insoluble in almost all
the common solvents used in the laboratory, and is, for all practical purposes,
chemically inert. However, the ionizable or functional groups attached to
the matrix have active (mobile) ions that can react with or be replaced by
other ions. Therefore, if an exchanger particle is brought into contact with
an aqueous solution containing ions, the latter may be easily exchanged for
those ions initially bound to the resin.

The chemical behavior of an ion-exchange resin is determined by the
nature of the functional groups that are attached to the hydrocarbon skeleton.
There are two major classes of ion-exchange polymers: cation exchangers,
whose functional groups can undergo reaction with the cations of a surround-
ing solution; and anion exchangers, whose functional groups can undergo
reaction with the anions of a surrounding solution.

A typical cation-exchange resin is prepared by the copolymerization of
styrene (I) and divinylbenzene (I1). During the polymerization reaction, first
linear chains of polystyrene are formed, and these in turn then become
covalently bonded to each other, at intermittent points, by divinylbenzene

CH=CH, CH=CH,

CH=CH,
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Fig. 1-1. Strong-acid polystyrene type cation-exchange resin.

crosslinks; the result is a three-dimensional insoluble hydrocarbon network.
If sulfuric acid is then allowed to react with this copolymer, sulfonic acid
groups (—SO; H*) are introduced into most of the benzene rings of the
styrene-divinylbenzene polymer, and the final substance formed is a cation-
exchange resin (2, 3) whose structure is given in Fig. 1-1.

A typical anion-exchange resin is prepared by first chloromethylating
the benzene rings of the three-dimensional styrene-divinylbenzene copolymer
to attach —CH,Cl groups and then causing these to react with a tertiary
amine, such as trimethylamine. This gives the chloride salt of a strong-base
exchanger (2, 3), which has the structure given in Fig. 1-2.

These crosslinked vinylbenzene resins have remarkable chemical and
physical properties. For instance, they are insoluble in concentrated acids,
bases, and salts and are resistant to oxidation, reduction, and radiation. The
resins have excellent thermal stability and have a high “exchange capacity,”
which means that a high percentage of the benzene rings of the styrene-
divinylbenzene matrix must contain the added ionic functional groups (3).
These ionic groups, covalently bonded to the resin matrix, maintain the same
chemical properties that they display in aqueous solution; they behave as if
they were in the free monomeric form. Consequently, the ionic group fixed
to the polymer determines the nature of the ion-exchange material (4). There-
fore, just as there are strongly and weakly ionized acids and bases, so can
there be these classes of ion-exchange resins. Since there obviously can be
many types of ion exchangers, this brings up the question of how best to
classify ion-exchange materials.
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—CH—CH,—CH—CH,—CH—

~CI(CH);NCH, CH,N(CH,),CIn
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CH,N(CH,),CI- CH,N(CH,),CI”

—CH—CH,—CH—CH,—CH—CH,—CH—CH,—CH—
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—CH— —CH—
CH,N({CH,),CI

Fig. 1-2. Strong-base quaternary ammonium polystyrene type anion-exchange
resin.

Thus far, the modern types of ion exchangers have been considered as
being of a resinous nature. For all practical purposes, the lattice material of
these synthetic polymers is of only two kinds. The so-called polystyrene resins
are of the type illustrated in Figs. 1-1 and 1-2. The other variety of resinous
exchanger is prepared by the copolymerization of methacrylic acid (III) and
divinylbenzene (II). The result of this reaction gives the weak-acid, acrylic
type of ion exchanger (2, 3) that has the structure shown in Fig. 1-3.

CH,
|

C:CHZ
|
COOH
I

In addition to the two kinds of crosslinked vinylbenzene polymers, there
are other types of exchange substances of high capacity, such as inorganic
ion-exchange crystals and exchange materials made by introducing functional
groups into polyacrylamide gels, celluloses, or dextrans. These latter ion-
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CH, CH, CH,
| | l
—~C—CH,—C—CH,—CH—CH,—C—
l | | |
COOH COOH COOH
CH, CH, CH,
I | | |
—C—CH,—C—CH,—CH-—CH,—C—
Fig. 1-3. Weak-acid acrylic type cation- | |
exchange resin. COOH COOH COOH

exchange materials have specialized uses, such as high selectivities for certain
ions, or are useful in fractionating macromolecules, such as serum proteins,
nucleic acids, and enzymes; these types of exchange materials are considered
in a later section (Chapter 3) on “Selecting the Proper Ion-Exchange Mate-
rial.” Many of their properties are given in tabular form in that chapter.

The crosslinked vinylbenzene resins are more versatile and are utilized
more than any other exchange material available. For this reason, they will
be considered, for the remainder of this book, in more detail than other types
of exchangers. Nevertheless, the principles and concepts associated with
the synthetic crosslinked resins can readily be applied to other ion-exchange
substances.

C. CHEMICAL FORMULAS FOR ION-EXCHANGE RESINS

lon-exchange resins can be considered as insoluble acids, bases, or salts
and, as such, their roles in chemical reactions are easier to visualize if they
are assigned chemical formulas. Once the matrix material is specified and is
then given a symbol, various kinds of ion exchangers can be classified by
formula. Symbols such as ¢ or R are commonly used to represent the lattice
material of an ion-exchange substance. By attaching to such symbols the
known chemical structure of functional groups, ion-exchange materials are
thus conveniently characterized according to their formulas. For example,
formulas IV and V represent a weak-acid and a strong-acid cation-exchange
resin, :

RCOOH RSO,;"H*
1v v

respectively. The sodium salts of 1V and V, in turn, have the formulas given
in VI and VII

RCOO~-Na* RSO;"Na*
Vi viI
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A strong-base exchanger is represented by formula VIII, and if it were con-
verted to the chloride form, it would then have the formula denoted by IX.
A weak-base exchanger is highly ionized only when

[RN(CH,);]*OH" [RN(CH,),]*Cl~
VI X

in a salt form such as that represented by formula X. In the free base form,
the formula would simply be that given for XI, which is the formula for
a tertiary amine. Being a weak base, it would tend to

[RNH(CH,),]*Cl- RN(CH,),
X XI

lose its ion-exchange properties at pH values much above 7. It follows then
that ion exchangers have chemical properties similar to those of other ionic
substances. Exchangers with highly ionized functional groups are similar to
strong acids and bases, while those with weakly ionized functional groups
behave like weak acids or bases.

Chemical equations can be written in the usual manner for the reactions
between ion exchangers and other ionic substances. This is illustrated in the
following set of equations.

RSO, H* - K* + ClI- = RSO,"K* + H* - CI- (1-1)
2 RSO, Na* + Ca** + 2 CI" —= (RSO,7),Ca** + 2Na* + 2Cl~ (1-2)
2 [RN(CH,),]*Cl- -+ 2 Na* + SO,~

<= [RN(CH,);],*S0,~ + 2 Na* 4+ 2ClI-  (1-3)
RCOOH + Na* + OH- —= RCOO-Na* + H,0 (1-4)
RN(CH,), + H* + CI- == [RNH(CH,),]*CI" (1-5)

D. PHYSICAL PROPERTIES OF ION-EXCHANGE RESINS

1. Particle Size and Form

Most ion-exchange resins are sold in the form of spherical beads. In
a typical preparation, the particles may range from 1 mm to less than 0.04
mm. The resin beads are graded in a range of sizes by manufacturers and
suppliers. The coarser particles (50-100 mesh)* are usually used in batch
operations in which slurry contact of the exchanger and solution is made.
Following the reaction, the resin beads may be separated from the solution
phase by filtration, settling, or centrifugation. The finer resin particles (200~
400 mesh or smaller)* are utilized in chromatographic procedures wherein

*See Chapter 3.



