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PREFACE

THe book has been mostly rewritten to bring in various improvements
and additions. In particular, I have replaced the local theory with a global
treatment based on simple ideas of convexity and monotone operators.
Another major change is that the class of problems treated is much wider
than the Dirichlet type originally discussed. In addition, the variational
results are given a geometrical formulation that includes the hypercircle,
and error estimates for variational solutions are also described.

The number of applications to linear and nonlinear boundary value
problems has been doubled, covering some thirty cases which arise in
mathematical physics, chemistry, engineering, and biology. As well as
containing new derivations of well-known results such as the Rayleigh
and Temple bounds for eigenvalues, the examples contain many results
on upper and lower bounds that have only recently been obtained. -

The book is written at a fairly elementary level and should be accessi-
ble to any student with a little knowledge of the calculus of variations and
differential equations. v

I wish to thank Professor J L Synge of Dublin and Dr N Anderson of
York for many helpful discussions and suggéstions on the material
presented here. I am also grateful to the editors and the Clarendon Press
for including this monograph in their series.

University of York A MA.
September, 1979
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1

VARIATIONAL PRINCIPLES:
INTRODUCTION

1.1. Introduction

VARIATIONAL principles play an important part in mathematics and the
physical sciences for three main reasons: they (i) unify many diverse
fields, (ii) lead to new theoretical results, and (iii) provide powerful
methods of calculation. Thus, the well-known Euler-Lagrange principle
can be used to derive field equations of many kinds, extremum principles
lead to new estimates for important physical quantities, and direct
methods form the basis of very accurate computations (cf. Gould 1966,
Mikhlin 1964, Mitchell and Wait 1977). Many problems, however, are
usually first posed in the form of differential equations, or more generally
as operator equations, and there is no guarantee that an equivalent
variational problem exists. Even if we know that an equivalent problem
_ does exist, it may not be easy to find an explicit form for the variational
expression. Stated in mathematical terms, the problem is to find the
potential (or action) corresponding to a given field equation (cf. Vainberg
1963, 1973). Of course in some branches of mathematical physics, such as
classical dynamics, the variational problem is known once the Lagrangian
is specified. As it turns out, all the results obtained in this book are
examples of this latter kind, for which the basic action functional is
readily found. Ouyr particular interest centres on principles which lead to
variational bounds, and especially in those cases for which both maximum
and minimum (complementary) principles can be obtained. In many
applications these complementary extremum principles. provide upper and
lower bounds for quantities of interest, and they are also important
because of their utility for establishing bounds on approximate solutions
of a wide class of boundary value problems.

One of the earliest examples of complementary principles is provided
by the energy principle in the theory of structures, together with the
principle of complementary energy (Trefftz 1928). Another example
concerns the Dirichlet and Thomson bounds in electrostatics, while yet
another is Rayleigh’s bounds in acoustics (Rayleigh 1899). There are
several methods, closely related, by which complementary principles can
be derived. The first such method, due to Friedrichs (1929) and Courant
and Hilbert (1953), employs transformations to canonical and” mvo]utory
form, while another, which applies to certain linear problems,” employs
the hypercircle approach of Prager and Synge (cf. Synge 1957). This latter
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method is a geometrical version of the canonical variational method
(Arthurs 1977b), though it was originally developed quite separately.

More recently, starting with the work of Noble (1964), these ideas have
been expanded and generalized to form a coherent theory of complemen-
tary variational principles for boundary-value problems. This theory,
which forms the subject of the present monograph, provides a systematic
approach to many linear and nonlinear problems mvolvmg differential,
integral, and matrix equations.

As we shall see, the key results concern differentiable functionals
Hu, ¢) of two independent functions. Such functionals are stationary at a
solution (u,, ¢,) of the Euler equations

IL.=0, I,=0, | 1.1.1)

where subscripts denote differentiation. If I(u, ¢) is concave in u and
convex in ¢, then the complementary extremuvm principles

I(uz, ) <I(uo, do) € I(uy, b,) (1.1.2)
hold, where the functions (u;, ¢,) and (u,, ¢;) saﬁsfy

L(, $)=0 and I(u;¢)=0. (1.13)

The pair of equations in (1.1.1) represents an abstract form of the
canonical Euler-Hamilton equations in the calculus of variations,

1.2. Euler-Lagrange theory

The variational principles described in this book have theu: origins in
the simplest kind of variational problem that can be treated ‘by .the
Euler-Lagrange theory. Thus they are basically ooncemed with dxﬁerentl-
able functionals of the form

E@)= J Lix, @, &)dx, & =dd/dx, 2.1

with fixed end-points _
P(@)=a, Pb)=8B. , (1222

Here ® belongs to the class C, of functions whlch have continuous
derivatives up to second order for asx<h,and L is assumed to possess
continuous second-order derivatives with respect to all its arguments. Of
course, the assumptions just made can be relaxed to some considerable
extent (cf. Gelfand and Fomin 1963, Pars 1962), but we shall not deal
with that aspect of the theory here.
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Suppose now that the functional E(®) has an extremum at ¢ Then we
consider vanatlons round ¢

b=¢+et (1.2.3)
If ® and ¢ both satisfy the end-point conditions (1.2.2), it follows that
é(a)=¢(b)=0. (1.2.4)
Since E(®) is dMemntiaBle, we can write
E(d+e¢)=E($)+8E(d, e£)+5°E(d, e8) +..., (1.2.5)
where the first variation is '
BE=sI {g;; ¢ —} (1.2.6)
and the second variation is
82E=%e J' {52 Pye +2¢¢ a‘;zaé, 6’2:;,,;;} X. 1.2.7)
In (1.2.6)
aL/3¢p =oL(x, D, ®')/aP at D=4,
and

aL/d¢’' =dL(x, D, P)/od’ at d=¢,

with the second derivatives in (1.2.7) defined similarly. Integrating by
parts in (1.2.6), we obtain an alternative expression for the first variation

8L d 8L b
= —_ 2.8
SE J ‘5{34; dx a¢} [g ¢] 1.2.8)
Since the variations are such that ¢ vanishes at the end-points, this
reduces to _
[ gf2_doL)
BE—SJ g{a 2 o) (1.2.9)

For the functional E(®) to have an extremum at ® = ¢ it is necessary
that the first variation vanish. From (1.2.9) this means that

3L d 3L :
| j §{£—-d—xa¢ }dx =0. (_1.2.10)
Since £ is arbitrary in the interval (a, b), it follows from (1.2:10) that
BL_d3L_o a<x<b, © (21

ad dx oo’
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which is the Euler-Lagrange equation. We therefore can state

THEOREM 1.2.1. The integral E(®) in (1.2.1) is stationary at ¢ where ¢
is a solution of

oL d oL ' :
6_4:‘35747_0’ a<x<b (1.2.12)
with
d(@)=a, &b)=8. (1.2.13)

This is the Euler~Lagrange variational principle.

‘As a slight extension of this we note that the constraint (1.2.2) on the
admissible functions ® can be removed if instead of E(®) we consider the
functional i

b
J(@®) = J 'L, @) dx—[%, (@—%)] , (1.2.14)

where

dg=a at x=a,
=B at x=b.

For varied curves ® = ¢ +&¢, the first variation of J is
8]=sj{ ‘"‘+§ BL} x— e[:TI;,§+(¢—¢B)(§ a2L’+ ’iaz—I'-)]b

(1.2.15)

) abad - ad?/l,
=8I 5{%"%%}“" [(faf; f':;l;)w d»n)] (1.2.16)

For any variation ¢ so that ¢ is arbitrary in (@, b) and at x=aq, b, the
stationary condition 8J =0 implies that ¢ is a solution of

é“;“a;‘;—o, ar<.x<b

with
d=¢s at x=ab,

that is, ¢ satisfies (1.2.12) and (1.2.13). In this way the boundary
conditions on the critical function ¢ come out naturally from the station-
ary principle for J(®).

Equation (1.2.10) gives a necessary condition for an extremum, but, in
general, one which is not sufficient. In many cases, however, the Euler-
Lagrange equation (1.2.12) is itself enough to give a complete solution of
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the problem, and in fact the existence of an extremum is often clear from
the physical meaning of the problem. If in such a case there exists only
one extremal (critical curve) ¢ satisfying the boundary conditions of the
problem, this extremal must be the function for which the extremum is
attained.

Assuming that we have found a function ¢ which makes E(®) or J(P)
stationary, we now wish to consider the nature of the extremum, that is,
its maximum or minimum properties. If the inequality

J(d)=J(®@) (1.2.17)

holds for all admissible functibns ®, we have a minimum _principle, since
J(d) takes its smallest value for ® = ¢. Similarly, if the inequality

J(®@)<J(4) (1.2.18)

holds for all admissible functions ®, we have a maximum principle.
General conditions which lead to these principles are given in section 2.5.
Here we shall confine our attention to the integral (1.2.14) for which

AT =J(d+e€)—J(¢)

L, {52321. 2o L aTL +§,282L}d

2 —Z 321. . s
[5 Fryyadd 34,'2]; - ;(1',2';9_)_

where the overbar indicates that the factor is evaluated for some function
¢ =¢+mnet, 0<m<1. This expression may in various cases lead to a
definite result for the sign of AJ and hence to a maximum or a mmlmum
principle. : .

Example. To illustrate these results we consider a quadratic £ given by
L{x, ®, ) =p(@) +iwd?— q0, 1 (1.2.20)

where p, w, and q may be functions of x. By theorem 1.2.1 the associated

integral (1.2.14) is stationary at a solution ¢ of the Sturm-Liohvi]le
equation

d/(d ‘ ,
—dx( df) +wé=q, a<x<b  (1221)

subject to

dla)=a, oSb)=8. (1.2.22)
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If we now expand
J(@®)= f Bp(@)? +iwd?— q@}dx —[pP'(®—- )L (1.2.23)
about the critical curve ¢, we obtain by (1.2.19)
J(@)-J(d) =3¢ _[; (p€? +wg?) dx — &*[p€ €L, (1.2.29)

there being no terms higher than the second since L is quadratic here.
Now, if p>0 and w=0, the expression in (1.2.24) is non-negative
provided we make ¢£=0, that is ®=d¢p on 3[a, b]. Hence if p>0 and
w =0, we have the minimum principle

J(P)<J(D) (1.2.25)

for all admissible functions ® satisfying (1.2.2). If p=1 and w=q =0,
this result corresponds to a one-dimensional version of the well-knov.n
Dirichlet principle (cf. Pars 1962).

These results show that variational problems which are formulated in
terms of finding relative minima (or maxima) of Euler functionals lead in.

a natural way only to upper (or lower) bounds for the stationary value of
the functional. However, certain minimization problems in the calculus of
variations can be transformed into maximization problems. From a com-
bination of these two problems it is then possible to obtain upper and
lower bounds on the stationary value. One approach to these complemen-
tary bounds, due to Friedrichs (1929), is based on involutory (Legendre)
transformations. A related approach, due to Courant and Hilbert (1953),

Synge (1957), and Noble (1964), is based on the canonical form of E\ller: ’

theory, and it is this method which we now consider.

1.3. Canonical formalism

In the canonical approach functionals are expressed in texm ‘of ¢ and
of the conjugate variable U defined by

U=38L[ed'. _ -(1.3.‘1')
The Hamiltonian is defined by ' -

H(x, U, ®)=Ud' - L(x,O <l>’), (1.3.2)

where it is assumed that (1.3.1) gives @' as a function of x, ®, and U.
Then the action functional (1.2.1) is written as

IU,®)= [ {U&~H(x U, ), (13.3)

o

ft’(';) A
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the notation indicating that the integral I is to be treated as a functional
of the independent functions U and ®. As we shall see in theorem 1.3.1,
the associated Euler-Lagrange equations are

dd; 8H du oH
—= 1.34
dx ou’ dx a9 - ( )

These are the so-called canonical Euler (or Hamilton) equations, which
are well known for the part they play in analytical dynamics (Lanczos
1966).

To discuss the variational theory associated with (1.3.4) in detail, we
introduce the differentiable functional

(U, ®) = J (U®—H(x, U, ®) dx—[U@—d)E,  (13.5)

where the boundary term corresponds to that inv (1.2.14) and is included
to make the resulting boundary conditions natural. Now let u, ¢ be
critical curves of I(U, ®) and consider variations round u and ¢ by setting
U=u+ev, d=¢+st (1.3.6)

v and £ being arbitrary admissible functions. Then we obtain
I(U, ®) = I(u, ¢) +8I+ O(?), 1.3.7)

where the first-order terms are
b
8I= sJ {ug' +ve’~ éH, ~vH,} dx —e[v(¢ — dp) + ut L

i |
—c| (0@~ H)- g+ Hbdx—e[o(é ¢k (138)

Here subscripts on H denote partial derivatives évaluated at (u, ¢). For
the functional (1.3.5) to be stationary at U=u, ®=¢, 1t is necessary that
8I =0. From (1.3.8) this means that

b
[ - )+ B ax-[06- k=0, (139)

in which v and ¢ are any independent admissible functions. This implies
the following principle for the functional I(U, ®) defined by (1.3.5)
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THEOREM 1.3.1. The functional I(U,®) in (1.3.5) is stationary at u, ¢
where u, ¢ are solutions of the boundary-value problem

do_oH

<x< 3.
- au’ a<x<b, _ (1.3.10)
du oH
—— e — <x < 2.
x99’ a ‘x b, (1.3.11)
d=¢g on da,b] - (1.3.12)

This result tells us the precise form of the boundary conditions associated
with the functional (1.3.5). They arise naturally and in this case are of
Dirichlet type. Other boundary conditions can also be included in the
theory and we shall deal with them later on.

As we saw in section 1.2, in certain cases a bound J(®) can be obtained
for J(¢). In the present section the admission of variations in U which are
independent of those in @ gives an extra degree of freedom to the action
functional and suggests the possibility of a bound on I(u, ¢) different
from that given by J(®) = I(3L/a®’, ®). Before developing this idea for
the functional in (1.3.5), we shall examine a special case corresponding to
the example of section 1.2.

Example 1. Consider ‘
. L =3p(®)* +iwd*-q®, (1.3.13)
‘Where as before p, w, and q may be functions of x. By (1.3.1) the
conjugate variable U is given by

U =aL/ad = pd, . (1.5.14)

and the associated Hamiltonian H in (1.3.2) is

1 ' '
H(x, U, ‘I>)=§; U?—3wd?+qd. (1.3.15) .

The functional I(U, ®) for this example is- then

I(U,d>)=J {U@'—% cﬂ+§w¢2—q¢}dx~[U(d>¥¢,,)]z, (1.3.16a)

or

I(U,<I>)=J’ {—U’d>~—§15 U’+£w¢2—qd)}dx+[U¢BE, (1.3.16b)
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on integrating by parts. By theorem 1.3.1, the action I(U, ®) is stationary
at u, ¢ where these are solutions of the canonical equations

dd oH 1

— ===, 1.3.17
dx U p ( )
-%=g=—w®+q, a<x<b, (1.3.18)

d=¢5 on da,b] . (1.3.19)

Elimination of U here brings us back to the Euler-Lagrange equation
(1.2.21). Further, we notice that if the first canonical equation (1.3.17)
holds for arbitrary U and ®, then expression (1.3.16a) reduces to the
Euler—Lagrange form J(®) of the action integral, that is

I(pd', ®) 7 J(D). (1.3.20)

This functional is then stationary’ at ®=¢ provided that the second
canonical equation (1.3.18) also holds at (u, ¢). We have seen in section
1.2 that J(®)=I(pd',®P) can provide a bound on J(¢)=I(pd’, )=
I(u, ), and so it is natural also to investigate the behaviour of I(U, ®) if
® is determined in terms of U from the second canonical equation
(1.3.18).

Suppose then that we choose -any admissible function U and determine
@ =P(U) by making the second canonical equation (1.3.18) hold identi-
cally. This gives i

<D=<I>(U)=%(U’-i~q), @321

., w being non-zero here. Now (1.3.21) and (1.3.16b) specify a form of the
action functional dependent on U only, which we shall call G(U). Thus

G(U)=1(U, ®(U)

1 -(1.3.22)

=-3 { U+~ (q+U')2}dx +[Udsl.
This functional is complementary to J(®) above, in the sense that each
can be obtained from I(U, ®) by eliminating U"or ® with the help of one
or other of the canonical equations assumed to hold identically.

From its construction G(U) is stationary at U =u and G(u)=I(y, ¢)
To investigate possible bounds let

U=u+ev.
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Then we find that
1 2 > 1 2 1 7?2 .
Gw)-GU)==¢ —v*+—v"%dx, (1.3.23)
2 b p w

there being no terms higher than the second order since H is quadratic
here. It follows that, if p>0 and w>0, the expression in (1.3.23) is
non-negative and hence we have the maximum principle )

G(U)<G(u) = I(u, $) (1.3.24)

for all admissible functions U.

We saw earlier in (1.2.25) that if p >0 and w =0, the Euler-Lagrange
functional J(®) in (1.2.23), or equivalently in (1.3.20), satisfies the
minimum principle

Ku, ¢)=J($)<J(®) (1.3.25)

for all admissible functions @ such that ®=¢y on da, b].
Combining the results (1.3.24) and (1.3.25), we see that for this
example wes have established complementary upper and lower bounds

GU)<I(u, $)<J(D), (1.3.26)

given that p>0 and w>0.

The stationary properties of J(®) and G(U) are called complementary
variational principles, and in (1.3.26) we have an illustration of the case
when these can be strengthened into complementary extremum princi-
ples. Thus, in this example, the variational principles provide upper and
lower bounds for the solution I(u, ¢) of the variational problem. We note
that

) _
I(u, )= —%j qd dx +pdd't, (1.3227)

which follows from (1.3.16). Apart from the boundary term in (1.3.27),
we see that upper and lower bounds have been obtained for a certain
weighted ‘average §q¢ dx of the solution ¢. In many applications the
quantity I(u, ) is related to the energy of the physical system under
investigation, and bounds for it may be of considerable interest.

Example 2. In example 1 we assumed that w was non-zero in the
derivation of the G(U) bound. Let us now look at the case when w =0, It
is readily seen that, apart from equations (1.3.21) and (1.3.22), all the
results derived in example 1 hold with w =0. Consider then the modifica-
tions that are required to (1.3.21) and (1.3.22). These equations are
concerned with the derivation of G(U), which is obtained from I(U, )
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by seeking ® = ®(U) so that

dU 8H
ax 30 (1.3.28)
holds identically. But (1.3.28) in this case reads
—%]=q in a<x<b, (1.3.29)

and this cannot be solved for ®(U). Instead it represents a constraint on
the trial function U. Setting such a trial U in (1.3.16b) with w =0 gives

. .
GU)= —_12—,[ -‘1; U?dx+[Uds L. (1.3.30)

Equations (1.3.29) and (1.3.30) are thus the modified forms of (1.3.21)
and (1.3.22) when w = 0. We have included this example at this stage as it
shows in a simple way how the canonical approach leads to constraints in
an automatic fashion.

We now wish to extend the results of these examples so as to include
the more general action functional (1.3.5). Such an extension involves the
idea of convex functions which we shall briefly review first.

1.4 Convex functions
The definition of a convex function is based on the idea of ‘chord above

arc’. Thus we have et
Definition 1.4.1. A function f(x)eR is convex on (a, b) if
FAxy +(1=A)x) <= Af(x,)+(1—-A)f(x2) (1.4.1)

for 0<A <1 and any x,, x, in (@, b). A function f is strictly convex if the
inequality here is strict for distinct x, and x,. A function f is concave if —f
is convex.

When f is differentiable there is an equivalent ‘arc above tangent’
statement which is also useful. We give this in

LEMMA 1.4.1. If f is differentiable in (a, b), the followmg are equwalem
Statements:

(i) f is convex on (a, b);

(i) flx)—f(x2)—(x,—x)f (x)=0,  x,,x2€(a, b). (1.4.2)
Proof 4

(a) We first prove that (1.4.1) implies (1.4.2). From (1.4.1) we have

FOx) — f(x2) = A7 + A (3, = x2)) — f(x2)} = 0.



