


[ | —

A 244
S
Advances 1n
CHEMICAL PHYSICS

University of Brussels
Brussels, Belgium
and
University of Texas
Austin, Texas

AND

STUART A. RICE

Department of Chemistry
and
The James Franck Institute
The University of Chicago
Chicago, Illinois

/  YOLUME XLVI

-4




AN INTERSCIENCE® PUBLICATION .

Copyright © 1981 by John Wiley & Sons, Inc. -
All rights reserved. Publishad simultancously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Sections 107 or 108 of the
1976 United States Copyright Act without the permission
of the copyright owner is unlawful. Requests for
permission or further information sHould be addressed to
the Permissions Depamnent, John Wiley & Sons, Inc.

Library of Congieu C&ulogCudNumber 58-9935

ISBN 0-471-08294-5 T L

ISSN 0065-2385 . \
‘ - 3

Printed in the United States of America

109376543215




INTRODUCTION

Few of us can any longer keep up with the flood of scientific literature,
even in specialized subfields. Any attempt to do more, and be broadly
educated with respect to a large domain of science, has the appearance of
tilting at windmills. Yet the synthesis of ideas drawn from different sub-
Jjects into new, powerful, general concepts is as valuable as ever, and the
desire to remain educated persists in all scientists. This series, Advances in
Chemical Physics, is devoted to helping the reader obiain general informa-
tion about a wide variety of topics in chemical physics, which field we in-
terpret very broadly. Our intent is to have experts present comprehensive
analyses of subjects of interest and to encourage the expression of individ-
ual points of view. We hope that this approach to the presentation of an
overview of a subject will both stimulate new research and serve as a per-
sonalized learning text for beginners in a field.

Iva Pmdoonm

STUART A. RICE
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1. INTRODUCTION

An accurate representation of the electronic structure of atoms and
molecules requires the incorporation of the effects of electron correlation,’
and this process imposes severe computational difficulties. It is, therefore,
only natural to investigate the use of new and alternative formulations of
the problem. Many-body theory methods?™ offer a wide variety of attrac-
tive approaches to the treatment of electrop correlation, in part because of
their great successes in treating problems in quamum field theory, the sta-
tistical mechaaics of many-body systems, and the electronic properties of
solids.

The pioneering work of Kelly® on atoms provided the first comprehen-
sive utilization of many-body theory methods to describe electron correla-
tion in these systems. These studies investigated the use of diagrammatic
many-body perturbation theory, an approach that appeared to be quite
different from the more traditional wave function methods. However, if a
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summation is made of the diagrams that Kelly found numerically to be the
most important, the final result can then be shown to formally be equiva-
lent to the sum-of-the-pairs wave function theories® that had previously
been proposed by Sinanoglu,” Nesbet,? and others. Thus, Kelly’s work pro-
vided the first calculation of this sum-of-the-pairs variety. The framework
of many-body perturbation theory also introduced a new vehicle for gain-
ing physical understanding of the important processes in atomic electronic
correlation. Furthermore, the work of Kelly has resulted in the introduc-
tion of a vast number of approximations and techniques that have had a
wide impact on other approaches to electronic correlation.

Many-body Green’s function-equations of motion methods® ' appear to
differ more strongly from wave function theories than does many-body
perturbation theory. In wave function approaches it is necessary to evaluate
energy differences, (excitation energies, ionization potentials, electron af-
finities, etc.) by determining the individual state energies and then evaluat-
ing their differences. On the other hand, the Green’s function—equations of
motion methods generate these energy differences directly.

There have also been other attempts to evaluate these energy differences
directly.'"!3 These methods utilize Rayleigh-Schrédinger perturbation the-
ory to express the energies for both states with a common orbital basis.
When the perturbation series for the two state energies are subtracted, it is
found that there is a considerable cancellation of identical terms from the
individual series. .

In all these direct energy difference methods the hope is that by a
cancellation of common terms in the individual state energies, greater ef-
ficiency and accuracy can be achieved as compared with the traditional
single state approaches. In addition, the equations of motion (EOM) and
the many-body Green’s function (MBGF) methods introduce a different
operator algebra and outlook into the problem. This has the disadvantage
of making the rhaterial quite incomprehensible to many practitioners of
atomic and molecular quantum mechanics on one hand, but it also raises
the possibility of the generation of new and useful insights into these elec-
tronic processes. These methods also introduce a new many-electron basis,
to be called the many-body basis, which may be superior in some aspects,
both conceptually and in terms of practical calculations, to the traditional
configuration set. Throughout the discussion that follows we attempt to
bridge the language gap between the many-body theory methods and the
traditional wave function approaches by noting many of the strong paral-
lels between the EOM method and traditional wave function theories, sim~
ilarities that may often be obscured by the different formalism of the
former.
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A critical analysis of the Green’s function—equations of motion metaod
requires the resolution of the following questions: (/) Are these Green's
function—-equations of motion methods formally different from traditional
wave function or many-body perturbation theory approaches? Even if they
are not, these methods should still be of considerable utility because of the
new insights and approaches afforded by them. (2) If indeed the answer to
the first question is affirmative, it is of interest to determine thé manner in
which the many-body Green's function- -equations of motion methods dif-
fer from the more traditional approaches. This is imperative if we are to be
able to make meaningful comparisons of calculations that have been
formed using the two types of theory. The reduction of these method types
to a common language would thereby enhance our physical understanding
of the important processes in determining the electronic structure of atomic
and molecular systems. (3) It is also iraportant to determine which types of
systematic approximation can be utilized within the Green's function—
equations of motion methods to prisvide results that are at least as accurate
as those obtainable from the most sophisticated configuration interaction
treatments now available.

These three questions have motivated a series of our studies of both the
formal and computational aspects of the Green’s function—equations of
motion methods.

It is possible to provide a partial answer to question / without ever be-
coming enmeshed in the complicated details of Green’s function-equation
of motion theories. The simple reasoning is as follows.!* '* Any “black box”
that produces the electronic energy levels of a many-clectron system must
somehow be related to the electronic Hamiltonian for the system or func-
tions of this electronic Hamiltonian. Similarly, any theory that directly
provides energy differences must be related to the only quantum mechani-
cal operator whose eigenvalues are the energy differences. This operator is
the Liouville operator L, which is defined by its action on an arbitrary op-
erator A by

LA=[H, A]=HA—AH

where H is the electronic Hamiltonian for the system and the square
brackets denote the commutator as usual. Thus the equations of motion~
Green's function methods must somehow differ from their wave function
counterparts, which are based on the approximate solution of the eigen-
functions and eigenvalues of the electronic Hamiltonian H.

There have been a number of attempts to use Liouville operator
techniques to-directly evaluate energy difierences These attempts intro-
duce the operator basis set, {|#>{j|}, where {}i>} is a set of basis func- °
tions. The eigenfunctions of L are then reprcsented as linear superposition
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of the basis operators,
2 J|'><J’|

These attempts have considered simple problems like the anharmonic oscil-
lator problem in a harmonic oscillator basis or the hydrogen atom in a
Gaussian-type basis, gencrally with rather poor results. The reason for these
difficulties is rather clear. Given N basis functions {|7 )}, there are N? ba-
sis operators {|i ) j|}. Consequently, the equations for the eigenvalues and
cigeavectors of L represent equations of rank N? X N2, as compared with
the usual equations for the cigenfumctions and eigenvalues of H, which are
of the much smaller dimension, N X N. Hence this simple-minded Liouville
operator approach merely compounds the mathematical difficuities al-
ready inherent in standard Hamiltonian methods.

The Green’s function-equations of motion methods can be shown not
to suffer from the N2 problem of the naive use of Liouville operator meth-
ods. As discussed below, it is found that the correspoading Green’s func-

. tion—equations of motion methods are problems that generate matrices of
dimension 2(N—1) when the original basis has becn gemerated from all
possibilities that arise from a given orbital basis set. Likewise, it can be
shown that the Groen’s function method can be represented as particular
subblocks (submatrices) of the resolvent of the Liouville operator, whereas
the equations of motion methods consider the cigenvalues and cigenvectors
of the Liouville operator in the same particular representation.

The one-electron Green'’s function has its poles at the iomization poten-
tials amd electron affinities of an atom or molecule, whereas the poles of
the two-clectron Green’s function are located at the excitation energies.’
Furthermore, the residues of the Green’s function at these poles yield in-
formation about the transition amplitudes. Two main approaches have been
foliowed in the evaluation of many-body Green’s functions. The first in-
volves the evaluation of a diagrammatic perturbative expansion for the
Green’s function,'3* and the latter looks for an approximate selution of
the hierarchy of equations™ 36! that the many-body Green’s function
obeys. The work of Cederbaum and co-workers'**? concerning the one-
electron Green's function is a particularly noteworthy example of the di-
agrammatic technique. These investigators have developed a variety of ap-
proximations and have provided extensive numerical data concernimg the
importance of specific diagrams.

The propagator technique, # uich attempts to solve the hierarchy of
equations for the many-body Green’s function, has been facilitated by the
use of inner projection techniques and the superoperator representation of
Goscinski and Lukman.® Ohrn and co-workers®**' have applied these
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techniques to the evaluation of ionization potentials of atomic and molecu-
lar systems. Several authors®” 4*-*® have discussed the relationship between
the EOM and MBGF approaches and have compared the various nu-
merical schemes. Because these many-body EOM and Green’s function
methods are so closely related formally, the results obtained from one pro-
cedure provides information that is pertinent to all.

All calculations discussed here involve the use of a finite (therefore in-
complete) set of analytical one-electron basis functions. A specific finite
orbital basis set defines a finite set of N,-clectron wave functions or basis
configurations that spans a finite-dimensional N, -electron subspace of the

_full Hilbert space. Within this finite dimensional space any N,-electron
. wave function can be expanded in terms of all the basis configurations (that
have the correct symmetry). For almost all systems of interest, when rea-
sonably accurate one-electron basis sets are used, this full N, -electron basis
expansion becomes prohibitively large, and accurate ways must be found
of truncating the expansion. Much of the effort in electronic structure
theory concentrates on devising better and more concise means of ap-
proximating the most important parts of the configuration space for the
problem at hand. One of the central goals of this work is to systematically
and critically investigate this problem for the equations of motion method.

The equations of motion method has its origins in nuclear physics, where
Rowe'? first developed it as a means of understanding nuclear energy level
structuré. McKoy and co-workers*->* refined the theory for the calcula-
tion of electron excitation energies and presented molgcular calculations for
a variety of different approximation schemes. Simons*~%° and Yeager® in-
dependently developed the analogous E@M theory for ionization poten-
tials and electron affinities. The present numerical work®~"? deals mainly
with the ionization potentials—electron affinity (IP-EA) variant of the
EOM theory. However, because of the analogous nature of the excitation
energy theory, many of the conclusions reached from the IP-EA calcula-
tions have immediate applicability to EOM excitation energy calculations.
Some excitation energy calculations on simple systems are utilized here to
illustrate important facets of the general theory.

Section II develops the EOM theory both for excitation energies and for
ionization potentials and electron affinities. After the main EOM equa-
tions have been derived, the nature of a complete operator basis set in EOM
calculations is determined and is shown to differ from the mathematically
complete set. The many-body operator basis is described, and approxima-
tigps introduced in practical calculations are discussed. There follows an
expianation of the various divisions that are utilized to separate the IP~EA

- operator basis into primary and secondary subspaces. Numerical evidence,
presented in Section III, indicates that the traditional division of the EOM
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operator space into primary and secondary subspaces (and the effectively
equivalent partition in Green’s function methods) for ionization potentials
and electron affinities is not generally adequate. Section I also develops a
more extensive IP-EA EOM theory, based on a generalized division of the
operator space, which is introduced in view of the difficulties presented in
Section III and of recent developments in configurational selection meth-
0ds™™ for generating accurate approximations to the full configuration
interaction matrix.

All IP-EA calculations given in Section III involve systems in which the
initial state is a closed-shell state and a single determinant is used for a
zeroth-order approximation to the ground-state wave function. This restric-
tion to closed-shell ground states and single-determinant, zeroth-order wave
functions has been common to nearly all EOM work, as well as to almost
all the related propagator and diagrammatic Green’s function calculations.
In Section II1.C, we present resuits on nitrogen that indicate the need for
developing a satisfactory equation of motion— Green’s function theory that
allows for a multiconfigurational zeroth-order, ground-state wave function
(corrected perturbatively). In Section IILF, excitation energy calculations
are reported for beryllium, to compare results using a multiconfigurational
reference state with the analogous calculations based on a reference wave
function having a single determinant. These studies further substantiate the
superiority of the multiconfigurational approach. In Section IV we briefly
review current attempts’’ "’ to devise an approximate theory that incorpo-
rates a multiconfigurational ground state and describe what we believe,
based on our numerical evidence, to be necessary for a general, truly relia-
ble, and accurate multiconfigurational equations of motion theory.

In Section IILA the differences between the IP-EA EOM methods of
Simons® and Yeager® are analyzed numerically for nitrogen. Section III.B
reports EOM ionization potentials for this gas using a series of different
orbital basis sets. These results lead to the conclusion that FOM calcula-
tions using small basis sets are unreliable, much as is the case for config-
uration interaction and other traditional methods. This study is of interest
because the early EOM results of Simons®"~%* appeared to indicate just the
opposite; namely, that EOM calculations using small basis sets provided
consistently accurate ionization potentials and electron affinities, presuma-
bly because of some cancellation of errors inherent in the method.

Section II1.C presents results of a study of certain third-order terms in
the EOM equation that had previously been neglected in IP-EA calcula-
tions. It.is found that some of these terms are reasonably small but not
negligible, whereas the inclusion of others in the EOM equation can cause
a complete breakdown of the traditional perturbative EOM method for
nitrogen when using the standard choice of the primary operator space.
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Different choices of the primary space are shown to remedy the difficul-
ties. In Section IIL.D the 15 to 40 eV photoelootren spectrum for nitrogen,
including shake-up lines, is calculated, given the generalived definition of
the EOM primary space. The peak intensities as well as peak positions are
calculated.

In Section IILE, BOM ionization potentials and clecicon affinities are
compared with accurate configuration interaction (CI) resulis for a number
of atomic and molecular systems. The same one-electron basie sets are
utilized in the EOM and CI calculations, allowing for the separation of ba-
sis set errors from errors caused by approximatiens made in the solution of
the EOM equatien. EOM results are reported for various approximations
including those for the extensive EOM theory developed in Section II. Sec-
tion IILF presents results of excitation energy calculations for helium and
beryllium to address a number of remaining difficult questions concerning
the EOM methed.

Section IV summarizes the major conclusions of these investigations and
outlines the extension and generalization of the EOM theory based on the
results of our numerical studies.

II. THEORY

A. Derivation of the EOM Equasions

Let |0)> be the exact N,-clectron ground state of the Born-Oppenheimer
Hamiltonian H for a given atomic or molecular system, Likewise, let |A)
be some exact excited state of interest for the same system with the same
nuclear geometry. The corresponding state energies are denoted E, and E,,
respectively. For excitation energy calculations |A) is an excited N, -
electron state, whereas in ionization potential or electron affinity cases jA)
is an (N, — 1)-electron state or an (N, + 1)-clectron state, respectively. The
commutator of H with the operator 07 =[A>{0| is easlly evaluated,

[#,6]] =H|A)<0|- A YO H
'(EA "Eo)|)\><0|
= (Ex~E)0] S

For IP (EA) calculations, it is necessary to define H to be the N,-clectron
Hamiltonian when it acts on N, -electron states and the (N, — {(N, + 1)}
clectron Hamiltonian when it operates on (N, — 1)[( N, + 1)]-electron states,
and so on. This is simply accomplished by defining H =3, P, H,\ Py,
where H,, is the M-electron Hamiltonian and P,, is the projection operator
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onto the space of all M-electron states. When H is expressed in second
quantized notation,? it automatically has this property.

Equation ] is an equation of the sort we are seeking; it vields the vertical
energy difference (£, ~ E,) directlz. One problem in calculating E, — E,
from (1) is immediately obvious. Of involves {A) and |0>, and if these
quantities are to be calculated separately, we have not gained anything from
(1) over the traditional approach.

1. Primitive EOM Equations

One possible means of circumventing the problem of handling both |A)
and [0 is to expand 0{ in an appropriate set of basis operators,

=3 crof P}
- ‘

and to determine equations governing the C}’s. One such set of equations
is readily obtained upon substituting (2) into (1) and multiplying from the
left by the adjoint of one of the basis operators, yielding

~

, § o[ H.0}|C} =(E, - E,) 2 0,0/c} 3)
) J

which is an operator matrix eigenvalue equation with eigenvalues ( E, — E,)
and eigenvectors

a
cr=lc “

Equation 3 still presents problems. First, it is an operator equation. Most
of the expertise that has been developed in electronic structure calculations
has centered on equations involving matrix elements of operators, rather
than the operators themselves. Second, and also important, the vast
majority of the solutions of (3) are ones in which we have no interest.
Within the limited orbital basis set approximation, there are only a finite
number n of linearly independent N, -electron states, or configuration
functions, that can be formed. Within this basis, the “exact” N,-electron
energies Ey, E,,..., E,_; and the corresponding “exact” N,-electron states,
|0>,...,}n—1), are, respectively, the eigenvalues and eigenvectors of the n
X n Hamiltonian matrix (i.e., the solutions of the complete CI problem for
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the finite orbital basis). For the excitation energy problem there are n” op-
erators of the type |A) (X'| (where |A) and |A’) are exact N,-electron
states), and it follows that n? must be the dimensionality of the space that
{O}} spans. Hence (3) has n? solutions, whereas the original Schrodinger
equation for the same finite orbital basis set has only n solutions. A similar
difficulty with (3) persists for calculation of ionization potentials or elec-
tron affinities.

Despite these difficulties, Lasaga and Karplus® have discussed the
calculation of excitation energies based on an operator equation related to
(3). Simons and Dalgaard® bhave proposed a perturbation approach to a
similar operator problem. To date, however, numerical applications have
been limited to the analysis of the singlet excitation of ethylene in Pariser-
Parr-Pople®? (PPP) model, a two-level problem.®

Both difficulties with (3) are overcome by taking the ground-state expec-
tation value of (3) to produce

S <00 H,01 ]|0>C* = (E, - Eg) T <010,0}105C> )
Jj F

To show that (5) has the desired n solutions as opposed to the n? solu-
tions of (3), consider the specific set of basis operators, {Of} = {|A><N'|},
where the states ]A) and |\’ are exact N,-¢electron states. In terms of this
operator basis set, the matrices <0|0,(H,0}1|0) and <0|0,0}|0) are read-
ily found to be diagonal. If Of =|\ > (0| and A#0, then (5) yields

0|0 H.0] ]I05C} = (E, ~E,)010,0] 0>}

If Of =|A)¢N| and X' #0 (A=0,1,..., n—1), then (5) trivially gives 0=0.
The remaining case is 0] = |0) <0}, where the matrix element {0 OjO] |0)> =1
while (0|O,[H,0}]|0> =0. Thus the operator |0) (0| corresponds to a zero
eigenvalue for (5). Therefore, only n basis operators, |A><0|, A=0,1,...,
n— 1, contribute nontrivially to (5).

2. Double Commutator EOM Equations

Actual numerical calculations introduce double commutator EOM equa-
tions'® for excitation energies and for ionization potentials and electron af-
finities that, respectively, are

<[ 0,.{ #.011]i0>C} =, Z <0 0, 0f Jjo>C} ©)
i J
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and
= o0, 8,01} =0, Z<®{0, 0 )o>c (1)
4 J

where { , } 1s the anticommutator, {4, B}=AB+ BA. Equations 6 and 7
are just simple linear matrix eigenvalue equations with w, = E, — E as ei-
genvalues and the q" ’s (which give O}) as eigenvectors. Equations 6 and 7
are often derived by assuming that the adjoint of O] satisfies the annihila-
tion condition ‘ '

0,10) =0 (8)

in analogy with raising and lowering operators in the harmonic oscillator
problem.® If (8) holds, it follows that

O|[ H,01] 00> =(010{0,10> =0 9

Combining (5) and (9) immediately yields (6) and (7). However, Herman
and. Freed”? have shown that the annihilation condition (8) is, in general,
not satisfied for the excitation energy problem when |A) is of the same
symmetry as |0). In fact, the equation O}|0) =|A ), which is usually taken
to define 0], does not hold for O} s that are general solutions of (6). These
conclusions result from the realization that the set of operators {j0) (0,
INSAY N, A" %0} (JA),|A") are eigenstates of H') give only zero matrix
clements when inserted for O, or Of in (0|[0,,[ H, O} ]Jj0) and (0f{0,, O]1/0).
Therefore, the most general Of that satisfies

<0l{0,,[ H,01]]10> =w0i[0,, 010> (10)
is given by
O =AY 0| +ag003C0+ 3 ap - |NDCAY an
A, A" w0

for arbitrary values of aq o and ay, ~. This Of does not satisfy 010> =|A)
and 0, ]0) =0 but rather has

010> =|A> +ao,40> (12)

and
OA0> =ay4|0) (13)



