\4\.\

n\

FORTRAN 77

\

A

by

Featuring Structured

Programming

i

,... iy
PEF sy o
Ay g R

« MOJENA

AGELOFF

Applied
FORTRAN 77

featuring
Structured Programming

ROY AGELOFF
University of Rhode Island

RICHARD MOJENA
University of Rhode Island

WADSWORTH PUBLISHING COMPANY
Belmont, California
A division of Wadsworth, Inc.

ISBN 0-534-009b1-1

Library of Congress Cataloging in Publication Data

Ageloff, Roy, 1943~
Applied FORTRAN 77.

Includes index.

1. FORTRAN (Computer program language)
2. Structured programming. 1. Mojena, Richard,
joint author. II. Title.
QA76.73.F25A33 001.64'24 80-27418
ISBN 0-534-00961-1

Editorial production services by Cobb/Dunlop Publisher Services, Inc.

About the Cover: Cover shows Doppler radar, the latest method for detecting storms in early
stages. Colors represent varying wind velocities. Photograph courtesy Severe Storms Labora-
tory, NOAA, Norman, Oklahoma.

© 1981 by Wadsworth, Inc.

© 1980, 1979 by Wadsworth, Inc. All rights reserved. No part of this book may be reproduced,
stored in a retrieval system, or transcribed, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the publisher,
Wadsworth Publishing Company, Belmont, California 94002, a division of Wadsworth, Inc.

Printed in the United States of America

10 11 12 13 14 15—90 89 88 87

Preface

This textbook is designed for a first course in FORTRAN programming. No prerequi-
sites are required other than a willingness to develop problem-solving skills.

The combination of features described below distinguishes this book from others
in the field.

FORTRAN 77 implementation. FORTRAN 77 is the basis of the FORTRAN material,
as established by the document labeled ANSI X3.9-1978. By FORTRAN 77 we mean
“full’’ FORTRAN 77 rather than ‘‘subset’”” FORTRAN 77. Statements and functions
used in this book are summarized and illustrated inside the front and back covers.

Evolutionary design. Following a comprehensive overview of the field in Chapter I,
coverage of programming proceeds from simple to difficult, with the student writing
complete programs by the end of Chapter 2 and running programs by the end of
Chapter 3.

By design, the pace of Chapters 2-4 builds slowly, to encourage confidence and to
develop a sound foundation. This approach necessarily discards the complete treatment
of a topic in one place. For example, loop structures are first overviewed in Chapter 4,
and a DO-loop implementation is illustrated. General DO-WHILE, DO-UNTIL, and
Last-Record-Check loops, however, are not implemented until Chapter 6.

Structured programming. The structured programming philosophy is presented early
in Chapter 4, elaborated upon in Chapters 4-6, and adhered to throughout the book.

Chapter 4 implements the loop structure through DO/CONTINUE statements. The
early implementation of the loop structure based on DO/CONTINUE statements has
several advantages: it allows the early introduction of realistic problems and the power
of repetitive processing; it’s ‘‘cleaner’’ than the IF/GO TO approach; and it minimizes
breadth of coverage (thereby student confusion) in one chapter by postponing the
introduction of [F-type statements.

Program design and style. Good program design and style are emphasized throughout
the book. For example, in Chapter 2 we present a four-step program-writing procedure
that includes flowcharts and pseudocode. Other style considerations include documen-

vii

viil

Preface

tation (from Chapter 3 on), indentation (from Chapter 4 on), structured programming
(Chapters 4-11), the ‘‘proper’’ use of GO TO statements (Chapter 6), top-down design
(Module E), and modular programming (Module F).

Additionally, Module G summarizes a number of issues in good program design,
including the interrelationships among structured, top-down, and modular program-
ming; the readability versus efficiency tradeoff; the design of general versus specific
programs; the use of documentation aids; and considerations regarding debugging,
transportability, reliability, and management practices.

Use of Modules. We have attempted to design flexibility into the use of this book by
placing certain topics in modules at the book’s end. Intrinsic functions (Module A) are
first used in Chapter 2; I/O with formats (Modules B—D) is not used specifically until
Chapter 7, but can be assigned at any time after Chapter 4; top-down design, including
stepwise refinement (Module E), can be assigned either during or after Chapter 5;
modular programming (Module F) can be assigned at the end of Chapter 9; and
Module G (On Designing Better Programs) can be assigned any time after Chapter 6.

Emphasis on meaningful applications. The word ‘‘applied’’ in the title of the book is
used to suggest our emphasis throughout on meaningful applications of the computer.
Applications include those relating to information processing and those relating to math-
ematical modeling. They are described in a wide variety of contexts, including areas in
business, economics, mathematics, statistics, and the sciences, as well as emerging
areas in the public sector (such as health care delivery, emergency response systems,
and allocation of public resources).

Table A summarizes and references the applications described in the book
through examples and exercises. This table clearly illustrates our philosophy that prob-
lems should be presented in an evolutionary context. As new material is learned, many
examples and exercises improve upon previous versions of the same problem. This
approach not only is pedagogically sound but also is consistent with (but not identical to)
the evolutionary nature of program design in the ‘‘real world.”’

Extensive examples and exercises. The learning of FORTRAN is greatly facilitated by
numerous and carefully designed examples and exercises. More than 60 complete pro-
grams are illustrated in this book; entirely new programs are accompanied by flow-
charts and/or pseudocode. Exercises are found both within chapters (Follow-up Exer-
cises) and at the end of chapters (Additional Exercises). The book has 493 exercises,
many with multiple parts. The chapters on programming (Chapters 2-11) average better
than 40 exercises per chapter.

Follow-up exercises serve to reinforce, integrate, and extend preceding material.
This feature gives the book a ‘‘programmed learning’’ flavor without the regimentation
of such an approach. Additionally, we have found that such exercises create an excel-
lent basis for planning many classroom lectures. Answers to selected follow-up exercises
are provided at the back of the textbook. Solutions to those follow-up exercises identified
by either a single or double asterisk are given in the Instructor’s Manual.

The chapter-end exercises offer opportunities for review and the development of
new programming problems. All programming problems include test data. Examples

Preface ix

TABLE A Page References for Applications Programs

Information Processing

student billing 23, 56, 60, 71, 110, 117, 437, 462 crime data summary 276, 316

form letter 136, 393

sales bonus 143, 153, 166, 186, 203, 206

finding minimum value 151

postal zone fees 155, 161

property tax assessment 176, 276

personnel benefits budget 178

computerized matching—a file search 179,
316, 422

credit billing 180, 422

traffic court fines 191

mailing list 217, 316, 422

telephone company billing 219

checking account report 220

analysis of bank deposits 229

direct access to array element—SAT scores
257

table look-up: life insurance premium 260

sorting 268

revenue sharing 277, 423

exam grading 280

stock portfolio valuation 281

income tax 304

projected enrollments 311

interactive airline reservation system 316, 423
personnel salary budget 319

questionnaire analysis 320

electric bill 361, 424

text editing 374, 381, 388, 398

text analysis 386, 394, 395

text processing 395

cryptography 396, 397

personnel file 411, 414

blood bank inventory control system 418, 423
payroll 424

class grades 426

Government Printing Office orders 496

Mathematical Modeling

bank savings 61, 80, 112, 137

area 64, 98, 133

microeconomics 64, 98, 134
temperature conversion 64, 98, 133
blood bank inventory 65, 98, 135
forecasting population growth 65, 98, 216
automobile financing 65, 98, 135
mean exam scores 123, 126, 127
exponential CDF 136

retirement contribution 138
optimal cost per credit 139
factorials 177

quadratic roots 178

police car replacement 182
inflation curse 196, 200

root search algorithm 208

Poisson probability function 218

crew selection—a combination problem 222,
337

Newton's approximation method 223

numerical integration 225

polynomial plot 265

support facility for oil drilling platforms 276

sales forecasts 279

vector representation of a matrix 303

Poisson-distributed electronic failures 318

matrix multiplication 322

combinations 325, 353

mean of one-dimensional array 338

statistical analyses 363

automobile rental decision 508

Preface

and exercises are generally framed in a ‘‘real world”’ context that will interest and
motivate the student. Exercises are ordered from least difficult to most difficult. The
more difficult exercises are designed to challenge the good student, and are identified by
a double asterisk. The Instructor's Manual gives answers to all chapter-end exercises.

Common errors. The necessary process of debugging is time consuming, frustrating,
and difficult to master by beginning programmers. In our experience, students commit
certain programming errors more commonly than others. Accordingly, the book
features sections on debugging procedures and common errors at the end of each
programming chapter, beginning with Chapter 3 and ending with Chapter 11.

I/0 with formats. Our treatment of I/O with formats is carefully designed to give
instructors as much flexibility as possible regarding the choice of list-directed I/O versus
format-directed I/O. The topic (I/O with formats) is set off in modules (B-D), which can
be assigned as early as the end of Chapter 4. Within chapters, the use of format specifi-
cations is postponed until Chapter 7; thereafter the use of format specifications is either
clearly labeled (and easily skipped) or incidental to the material.

In effect, the book is essentially independent of /O with formats, but is designed to
facilitate timing and integration of the topic. Our own preference is to delay its introduc-
tion until after Chapter 6, to provide ample time first for algorithmic design.

Batch and time sharing. Since the computer systems at institutions of higher educa-
tion vary, we illustrate both batch and time-sharing approaches to computing. Time
sharing is given more than a superficial treatment in keeping with its increased use in
universities, governmental agencies, and companies.

To accommodate both batch and time-sharing users, most programs and discus-
sions of FORTRAN are independent of processing environments. For example, we
consciously use the term input record instead of card.

Where appropriate (Chapters 3 and 11) we design programs for either batch or
time-sharing environments. This allows us to describe features of each system. In
general, however, the book can be used without bias by either batch or time-sharing
users. Better yet, as in our own treatment of programming, it can be used by courses
that require exposure to both processing environments. In particular we favor the
growing use of batch interface.

A book on programming and problem solving, not a programming manual. We believe
that a FORTRAN course should be much more than just a course that teaches the
FORTRAN language. It should teach the process of programming as a creative activity,
from conceptualization of the problem to implementation of the computer program.

In keeping with this belief, we sacrifice some scope in the FORTRAN language by
devoting more space to pedagogy through patient explanations and extensive examples
and exercises. Additionally, we emphasize the development of problem solving by
formalizing the writing of programs through a four-step procedure first introduced in
Chapter 2, which subsequently is integrated with top-down design and modular pro-
gramming.

Preface xi

A programming course also should broaden a student’s perspective. Accordingly,
Chapter 1 presents a more thorough overview of the field than does the typical introduc-
tory chapter, and Module G summarizes style issues of keen topical interest.

ACKNOWLEDGMENTS

We wish to express our deep appreciation to many who have contributed to this project:
to Jon Thompson, our editor, for unflagging encouragement, support, and expert ad-
vice; to Jerry Holloway of Wadsworth and Lila Gardner of Cobb/Dunlop for editorial/
production magic and liaison par excellence; to Richard R. Weeks, Dean, University of
Rhode Island, for administrative support; to David Wishart, CLUSTAN, and A. Jack
Cole, Computational Science Department, University of St. Andrews, Scotland, for
their generous and kind support; to the Computer Laboratories at the University of
Rhode Island and the University of St. Andrews, for obvious reasons; to our reviewers,
Nell Dale, University of Texas, Austin, Donald R. Chand, Georgia State University,
Mark Luker, University of Minnesota, Duluth, Dale Grosvenor, Iowa State University,
Kenneth Joy, Northern Michigan University, Thomas J. Murray, University of
Missouri, St. Louis, and Donald Woods, Texas A & M University who provided in-
valuable corrections and suggestions for manuscript revisions; to Fred Wild, Andrew
Ehrlich, and Susan Rose for ‘‘grunt’’ work on end-of-chapter solutions; to Fran Mojena
and Marjorie Nield for their skill, patience, and steadiness in typing the manuscript; to
our students, who always teach us something about teaching; and to our immediate
families, who are wondering when it will all end.

January, 1981 RoYy AGELOFF
Kingston, Rhode Island RICHARD MOJENA

Contents

PREFACE

1

ORIENTATION

1.1

1.
1.
1.
1.
1.

G hWN

What Is a Computer?

Impact of the Computer
Organization of a Computer
Communicating with the Computer
Computer Systems

Before You Leap

Exercises

2 FUNDAMENTALS OF FORTRAN

2.1
2.2
2.3
2.4
25
2.6
2.7

Steps in Writing Computer Programs
Elements of FORTRAN

FORTRAN Variables and Constants
FORTRAN Statements

Assignment Statements

List-Directed Input/Output (1/O)

Bank Savings Problem

Additional Exercises

3 RUNNING THE COMPLETE COMPUTER PROGRAM

xifi

3.1
3.2
3.3

Running a FORTRAN Program in a Batch Environment
Running a FORTRAN Program in a Time-Sharing Environment
Debugging Programs

Additional Exercises

vii

23

23
28
30
35
39
55
61

64

67

67
77
86
96

Xxiv Contents

4 CONTROL STRUCTURES AND THE DO-LOOP

4.1 Sequence Structure

4.2 Decision Structures

4.3 Loop Structures

4.4 Structured Programming

4.5 DO/CONTINUE Statements

4.6 |Initializations and Sums

4.7 Nested DO-Loops

4.8 Common Errors
Additional Exercises

5 THE IF-THEN-ELSE STRUCTURE AND ITS VARIANTS

5.1 Block IF, ELSE, and END IF Statements
5.2 Decision Structure Variations
5.3 Logical Expressions
5.4 Top-Down Design
5.5 Common Errors
Additional Exercises

6 ADDITIONAL CONTROL STATEMENTS AND STRUCTURES

6.1 GO TO Statement
6.2 Logical IF Statement
6.3 CASE Structure
6.4 DO-WHILE Structure
6.5 DO-UNTIL Structure
6.6 Last-Record-Check (LRC) Loops
6.7 Root Search Algorithm
6.8 Common Errors
Additional Exercises

7 ONE-DIMENSIONAL ARRAYS

7.1 Motivation

7.2 Subscripts

7.3 Array Declaration

7.4 Input/Output

7.5 Manipulating Arrays

7.6 Applications

7.7 Common Errors
Additional Exercises

8 MULTIDIMENSIONAL ARRAYS

- 8.1 Motivation
8.2 Subscripts

99

99
100
102
105
106
116
122
128
132

141

141
153
165
172
172
176

184

184
185
188
195
200
203
208
214
216

228

228
231
235
240
252
257
273
276

282

282
282

8.3
8.4
8.5
8.6
8.7
8.8

Contents

Array Declaration
Input/Output
Manipulating Arrays
Income Tax Application
Three or More Dimensions
Common Errors
Additional Exercises

9 SUBPROGRAMS

9.1
9.2
9.3
9.4
9.5

Subroutine Subprograms
Additional Topics
Function Subprograms
Modular Programming
Common Errors
Additional Exercises

10 OPERATIONS ON CHARACTER DATA

11

10.1
10.2
10.3
10.4
10.5
10.6

Review

Substrings

Concatenation

Character Intrinsic Functions
Selected Applications
Common Errors

Additional Exercises

EXTERNAL FILES

111
11.2
11.3
11.4
11.5
11.6
11.7

Fields, Records, and Files

Files in FORTRAN

Selected File-Related Statements
Sequential-Access Personnel File—An Example
Direct-Access Personnel File—An Example
Data Processing Applications

Common Errors

Additional Exercises

MODULES
INTRINSIC AND STATEMENT FUNCTIONS

A

A1

Definitions and Uses of intrinsic Functions

A.2 Selected Intrinsic Functions Having Generic Names
A.3 Statement Functions

XV

284
285
300
304
309
313
316

324

324
335
353
358
359
361

366

366
371
375
376
386
392
393

399

399
400
403
411
414
417
422
422

427
429

429
430
433

xvi

Contents

OUTPUT WITH FORMATS

B.1 PRINT and FORMAT Statements
B.2 Selected Edit Descriptors
B.3 Common Errors

INPUT WITH FORMATS

C.1 On Fields, Records, and Files
C.2 READ and FORMAT Statements
C.3 Selected Edit Descriptors

C.4 Common Errors

ADDITIONAL FORMATTED 1/0

D.1 Other Format Specifications

D.2 Imbalance Between List and Descriptors
D.3 Execution-Time Format Specifications
D.4 Common Errors

TOP-DOWN DESIGN AND STEPWISE REFINEMENT

E.1 Motivation
E.2 |lllustration: Government Printing Office Orders
E.3 Loose Ends

MODULAR PROGRAMMING

F.1 Fundamentals
F.2 Automobile Rental Decision Program

ON DESIGNING BETTER PROGRAMS

G.1 Motivation

G.2 Structured, Top-Down, Modular Programming
G.3 Documentation

G.4 Other Style Considerations

G.5 General versus Specific Programs

G.6 Transportability

G.7 Efficiency

G.8 Debugging

G.9 Reliability

G.10 Management Practices

ANSWERS TO SELECTED FOLLOW-UP EXERCISES

INDEX

437

439
442
459

462

463
465
467
480

482

487
487
490
493

495

495
496
503

505

505
508

521

521
522
522
523
524
525
525
527
528
528

531

597

CHAPTER 1

Orientation

The electronic computer is one of humankind’s foremost technological inventions; for
good or for bad, its presence affects each of us, and its future holds even more potential
to affect our lives.

This chapter is an orientation to the course you are about to take. We first define
the computer and discuss its impact. Thereafter we provide a relatively complete,
nontechnical overview of what makes up a computer system and a preview of how to
communicate with the computer. Finally, we outline how you will benefit from this
course.

If you are warm-blooded and living in the twentieth century, then we suspect that
you are curious about the computer. By the time this course is over we hope that we
(together with your instructor) will have helped you translate that curiosity into a
continuing, productive, and rewarding experience.

1.1
WHAT IS A COMPUTER?

A computer can be defined most generally as a device which is capable of manipulating
data to achieve some task. Given this definition, adding machines, cash registers,
gasoline pumps, and electronic calculators all qualify as simple computers. The ma-
chine we usually think of as a computer, however, can be identified by four significant
characteristics.

1. It’s electronic.

2. It’s fast.

3. It can store large amounts of data.
4. It can execute stored instructions.

Characteristics of Electronic Computers

The great speed of today’s electronic computers is a direct result of miniaturization in
solid-state electronics. To give you a rough idea of the speed capabilities of large
electronic computers, consider the following estimates. One minute of computer time is
equivalent to approximately 6700 hours of skilled labor by a person using a calculator.

1

2 Orientation

In other words, a person using a calculator would take one hour to accomplish what a
computer can accomplish in less than one hundredth of a second. In fact, the electronic
transfers within computers are so fast that computer designers use a basic unit of time
equal to one billionth of a second (called a nanosecond)—quite a feat when you consider
that the basic unit of time for us mortals is one second.

Another significant characteristic of electronic computers is their capacity to store
large amounts of data and instructions for later recall. In other words, much like the
human brain, the computer has ‘‘memory.’”” For example, computers at most univer-
sities can store several million characters of data in primary storage and hundreds of
millions of characters in secondary storage.

Finally, an electronic computer is differentiated from most other computing
devices by its ability to store instructions in memory. By this we mean that the com-
puter can execute a set of instructions without interference from human beings. This
characteristic makes the computer efficient: it can carry on automatically while we do
something else. Of course, the computer cannot completely do without us, but more
about that later.

Computer Classifications

To further narrow the definition of an electronic computer, we make the following
distinctions: analog versus digital computers and special-purpose versus general-
purpose computers.

The analog computer manipulates data representing continuous physical pro-
cesses such as temperature, pressure, and voltage. The fuel injection system of an
automobile, for example, deals with physical processes as it regulates the fuel/air ratio
in the carburetor on the basis of engine speed, temperature, and pressure; the gasoline
pump converts the flow of fuel into price (dollars and cents) and volume (gallons to the
nearest tenth). Not surprisingly, therefore, analog computers are used primarily to
control such processes. For example, analog computers now control the production of
products such as steel and gasoline, provide on-board guidance for aircraft and space-
craft, regulate the peak energy demands of large office buildings or factories, and monitor
the vital life signs of patients in critical condition.

As a strict computational device, however, the analog computer lacks the precision
one needs with counting. Place yourself in the role of a computer that has the task of
adding the numbers 1 and 2. Your props are a ruler, pencil, paper, and a jar of beads.
You might proceed with your task as follows: First, you take one bead from the jar and
place it on the paper. Next, you take two beads from the jar and place them on the
paper. Finally, you count the number of beads you have on the paper. Exactly three,
right? Now, be an analog computer. With pencil, paper, and ruler, draw a line 1 inch in
length. Next, draw a 2-inch line at the end of the 1-inch line you drew earlier. Now
measure the length of this overall line. Is your line exactly 3 inches long? Not really,
only approximately 3—as the accuracy of your answer depends on the precision of the
scale on the ruler, the steadiness of your hand, the acuteness of your eyesight, and the
sharpness of your pencil point. When it comes to calculating, the counting approach
based on beads is more accurate than the approach based on measurement.

You will be using the digital computer, which operates by counting digits. This type
of computer manipulates data (numbers in our decimal system, letters in our alphabet,

Impact of the Computer 3

and special characters) by counting binary (two-state or 0-1) digits. Hybrid computers,
which combine the features of digital and analog computers, have been designed for
certain types of applications, such as the analysis of aircraft designs that are tested in
wind tunnel experiments.

We have been classifying computers by how they process data, but we can also
classify them according to their function. Special-purpose computers are designed to
accomplish a single task, whereas general-purpose computers are designed to accept
programs of instruction for carrying out different tasks. For example, one special-
purpose computer has been designed strictly to do navigational calculations for ships
and aircraft. The instructions for carrying out this task are built into the electronic
circuitry of the machine so that the navigator simply keys in data and receives the
answer. Other special-purpose computers include those used in color television sets to
improve color reception; those used in PBX (Private Branch Exchange) telephones to
perform various functions, such as automatic placement of a call at a preset time and
simplified dialing of frequently used telephone numbers; and those used in automobiles
to calculate such items as ‘‘miles of fuel left’’ and ‘‘time of destination,’’ and to monitor
and read out instantaneously the status of oil level, gasoline level, engine temperature,
brake-lining wear, and other operating conditions.

In contrast, a general-purpose computer used by a corporation might accomplish
tasks relating to the preparation of payrolls and production schedules and the analyses
of financial, marketing, and engineering data all in one day. Similarly, the academic
computer you are about to use might run a management simulation one minute and
analyze the results of a psychology experiment the next minute, or it might even
accomplish both of these tasks (and more) concurrently.

In general, compared with the special-purpose computer, the general-purpose
computer has the flexibility of satisfying the needs of a variety of users, but at the
expense of speed and economy. In this textbook, we focus strictly on the electronic,
digital, general-purpose computer.

1.2
IMPACT OF THE COMPUTER

Since the first sale of an electronic computer by Remington Rand in 1951, the computer
industry has grown to such an extent that by the mid-1970s it had generated over $75
billion in sales and provided at least 700,000 jobs. The computer has revolutionized the
operations of many governmental agencies, private enterprises, and public institutions,
and many experts agree that the computer industry is a ‘‘young child,” if not still an
““infant.”’ In this section we present a brief historical sketch of the development of the
computer, provide you with a sample of computer applications, and end with an as-
sessment of the computer’s impact.

Historical Sketch

Many conceptions and inventions dating back to the early nineteenth century were
necessary precedents to the development of the computer. The first digital general-
purpose computer was completed in 1944 when Howard Aiken at Harvard University
designed the Mark I to generate mathematical tables. Unlike electronic computers, the
Mark I was a mechanical computer that operated by a system of telephone relays,

Orientation

mechanized wheels, and tabulating equipment. By current standards, it was very large,
very unreliable, very slow, and very limited in its scope of applications. In 1946 the team
of J. W. Mauchly and J. P. Eckert, Jr., from the University of Pennsylvania, completed
the first electronic computer. This computer was named ENIAC, for the intimidating
title Electronic Numerical Integrator And Calculator. Essentially, ENIAC was an elec-
tronic version of Mark I, in which vacuum tubes replaced the function of telephone
relays; this replacement resulted in an increase of computing speed by a factor of nearly
200. Commissioned by the U.S. Army, it did an incomparable job (for the times) of
generating artillery trajectory tables, but weighed 30 tons, and filled a 150-square-meter
room.

UNIVAC 1 (Universal Automatic Computer), developed by Remington (now
Sperry) Rand in 1951, was the first commercial computer. Unlike its predecessors, it
computed using binary arithmetic and allowed the storage of instructions in internal
computer memory. During this first-generation period computers were developed by
RCA, Philco, GE, Burroughs, Honeywell, NCR, and IBM. The first computer to
achieve dominance in the industry was the IBM 650, which became the commercial
leader during the period 1954-1959. These first-generation machines used vacuum
tubes, required air conditioning, had relatively small amounts of internal memory, and
were slow by today’s standards.

Subsequent generations of computers resulted in dramatic reductions in size and
relative cost and increases in speed, reliability, and the capacity for storage. Second-
generation computers during the period 1959-1965 replaced the vacuum tubes of the
first-generation computers with transistors. The most widely used second-generation
computers were the IBM 1620, the IBM 1401, and the IBM 7094.

The third-generation computers (1965-1970) that followed made use of the emerg-
ing field of microelectronics (miniaturized circuits), which increased the packing den-
sities of transistorized circuits by a factor of 100. The third-generation computers were
more reliable, faster, and more sophisticated than earlier computers. They also had the
ability to handle several programs concurrently (multiprogramming), resulting in a more
efficient use of the computer. The most prominent family of computers in this genera-
tion was the IBM System/360.

During the 1970s, a series of refinements and improvements to third-generation
machines were marketed. These computers utilized large-scale integrated circuitry
(LSI) and other microminiaturization features, resulting in further reductions in size and
power requirements as compared with earlier computers.

Another significant development in the 1970s was the use of small (in physical size
and memory capacity), inexpensive, yet powerful computers referred to as minicom-
puters and microcomputers. The use of minicomputers is common in small to medium
companies, colleges, hospitals, governmental agencies, and other organizations. In the
past decade many organizations have decentralized their computer processing activities
by implementing what is called distributed processing, whereby a network of computers
links together geographically remote locations. A typical configuration is a minicompu-
ter at each location for either local processing tasks or communication to a large central
computer for major processing tasks.

Microcomputers, which are smaller than minicomputers, currently are marketed
by consumer retail outlets such as Radio Shack. Today’s desk-top microcomputers are

Impact of the Computer 5

20 times faster, have larger memory, are thousands of times more reliable, consume the
power of a light bulb rather than a locomotive, occupy one 30,000th of the volume and
cost one 10,000th ($500 versus $5 million) as much as the massive first-generation
machines that filled an entire room. Their use in small organizations and homes is
expected to increase dramatically in the next decade.

Applications

The computer represents a revolutionary technological tool for extending our applied
capabilities. The diversity of the sample applications listed in Table 1.1 should give you

TABLE 1.1 Sample Applications of the Computer

Information Processing

Preparation of payroll and billings

Maintenance of inventory information

Maintenance of customer accounts

Technical processing of reference information by media and public libraries
Calculation of income taxes by the IRS

Maintenance of student records by universities

Maintenance of flight and reservation information by airlines

Cataloguing of blood supplies by regional blood banks

Maintenance of checking accounts by banks

Editing and reproduction of typed manuscripts

Maintenance of criminal records by the FBI

Maintenance of property tax records by a municipality

Budgeting by organizations and individuals

Recording of monetary distributions by state and federal welfare agencies

Mathematical Modeling

Statistical analyses of census data, biological data, engineering data, etc.

Production scheduling and inventory control

Medical diagnosis

Orbital analysis for satellites

Management of financial portfolios

Location of fire stations in an urban area

Simulation of economic decay in a city

Dietary meal planning in institutions

Statistical forecasting

Educational planning and school bus scheduling

Design of airway and highway traffic systems

Chemical analysis

Design of solar energy systems

Planning, scheduling, and controlling of complex projects (such as construction of a submarine,
office building, or sports stadium)

