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Preface

These lecture notes are intended to survey concisely the current state of know-
ledge about solving elliptic boundary-value and eigenvalue problems with the
help of a modern computer. For more detailed accounts of most of the relevant
ideas and techniques, the reader is referred to the general references listed follow-
ing this preface, to the basic references listed at the end of each lecture, and to
the many research papers cited in the footnotes.

To some extent, these notes also provide a case study in scientific computing,
by which I mean the art of utilizing physical intuition, mathematical theorems
and algorithms, and modern computer technology to construct and explore
realistic models of (perhaps elliptic) problems arising in the natural sciences and
engineering. :

As everyone knows, high-speed computers have enormously extended the range
of effectively solvable partial differential equations (DE’s). However, one must
beware of the myth that computers have made other kinds of mathematical and
scientific thinking obsolete. The kind of thinking to be avoided was charmingly
expressed by C. B. Tompkins twenty years ago in his preface to [1], as follows:

“I asked Dr. Bernstein to collect this set of existence theorems during the
parlous times just after the war when it was apparent to a large and vociferous
set of engineers that the electronic digital calculating machines they were then
developing would replace all mathematicians and, indeed, all thinkers except
the engineers building more machines.

“Many of the problems presented were problems involving partial differential
equations. The solution, in many cases, was to be brought about (according to
the vociferous engineers) by :

(1) buying a machine;

(2) replacing the differential equation by a similar difference equation with a

fine but otherwise arbitrary grid;

(3) closing the eyes, mumbling something about truncation error and round-

off error; and

(4) pressing the button to start the machine.”

The myth so wittily ridiculed by Tompkins contains a gra..a of truth, nevertheless.
One can approximate almost any DE by a difference equation (AE) with an
arbitrarily high “order of accuracy.” In particular, one can approximate any linear
DE by an approximating system of simultaneous linear equations which can, in
principle, be solved algebraically.
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In the 1950s, many techniques were invented for solving elliptic problems
approximately in this way ; an excellent discussion of them is contained i Forsythe
and Wasow [FW, Chaps. 20-25].! The first five lectures below cover roughly the
same material, but in more condensed style and with up-dated references. I shall
devote my second lecture to a brief survey of a few facts about classical analysis
which relate most specifically to elliptic DE’s. My third lecture will be largely
concerned with what classical analysis can say about the accuracy of difference
approximations. My next two lectures will be devoted to recent developments in
numerical algebra, and especially to the SOR and ADI iterative techniques for
solving elliptic DE’s.? Since 1965, the emphasis has shifted to variational methodk
and techniques of piecewise polynomial approximation (by “finite elements”,

“splines,” etc.), for solving elliptic problems. My next three lectures will be '
primarily concerned with thes¢smethods. Note that both approximation theory :

and “classical’ real and complex numerical algebra play essential roles in scientific:
computing ; so does the “norm” concept of functional analysis.

However, I shall say little about classical algebra or (modem) functional
analysis, because an adequate discussion of the first would lead too far afield, and
because Professor Varga will cover the second in his lectures. Neither shall T say
 much about organization of computers, even though designers of large and
frequently used “production” codes must take this into account. :

The sixth lecture, which builds on the ideas introduced in the sgeond lecture,
deals with the adaptation to computers of deeper techniques from classicdl
analysis. For these methods, which tend to apply only to special classes of prob-
lems, the book by Kantorovich and Krylov [KK] is the best reference.

The next two lectures, Lectures 7 and 8, center around recent applications of
piecewise polynomial (““finite element,” “Hermite,” or “spline”) approximations
to the solution of elliptic problems having variational formulations. The last
lecture reviews briefly the current status of a number of specific classes of problems,
in the light of the material presented in Lectures 1-8.

Throughout, results from the following list of general references will be utilized
freely. More special lists of references will also be given at the end of each chapter.

¢ - (GARRETIT BIRKHOFF

t Capltal letters in square brackets designate general references listed after this preface.

2 However, I shall not discuss general techniques for computing algebraic mgenthors and eigen-
values, because they are so masterfully discussed by Wachspress [W] and in R. S. Martin and J. H.
Wilkinson, Numer. Math., 11 (1968), pp. 99-110 and G. Peters and J. H. Wilkinson, SIAM J. Numer.
Anal., 7 (1970), pp. 479-492.
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"LECTURE 1

Typical Elliptic Problems

1. Two-endpcint problems. My aim in these lectures will be to describe a variety
of powerful and sophisticated numerical techniques which have been used to
obtain approximate solutions of -elliptic differential equations and systems of
equations on high-speed computers. My first lecture will be'devoted to describing
some typical physical problems to which these methods apply. I do this because
the effective use of computers often requires physical intuition to help one decide '
how to formulate physical problems, which parameters are most important over
which range, and whether an erratic computer output is due to physical or to
numerical instability. For this reason, I shall devote my first lecture to the intuitive
physical background of some of the most commonly studied elliptic problems of
m thematlcal physics.

n elliptic problems, one is given a partial differential equation (partla] DE) to
be satisfied in the interior ofa region R, on whose boundary 0R additional boundary
conditions are also to be satisfied by the solution. In the one-dimensional analogue
of ordinary DE’s, the region is an interval whos€ boundary consists of two end-
points. Therefore, two-endpoint problems for ordinary DE’s may be regarded as
boundary value problems of “elliptic” type. (By contrast, well-set initial value
problems for partial DE’s are typically of parabolic or hyperbolic type.)

The simplest two-endpoint problem concerns a transversely loaded string, in
the small deflection or linear approximation (cf. §8). If the string (assumed hori-
zontal) is under a €onstant tension T, then the vertical deflection y induced by a °
load exerting a transverse force f(x) per unit length satisfies the ordinary DE

(1) —y = f(x)/T (force in the y-direction).

If the endpoints are fixed, then the deflection satisfies also the two endpomt
conditions

(1) W0) = yc) =

The formal solution of the system (1){1) is elementary: One must first find an
antiderivative g(x) of f(x); then an antiderivative h(x) of g(x). Both of these are
easily computed by numerical quadrature (e.g., by Simpson’s rule). The general
solution of (1) is then 4 = h(x) + ax + b;the boundary condmons (1’) are satisfied
by some unique choice of a and b, giving the solution.

The problem of a longitudinally loaded spring is similar. If p(x) is the stiffness
of the spring, and f(x) is the load per unit length, then the appropriate DE for the

1



2 LECTURE 1

longitudinal deflection y(x) is
2 —[px)yT = f(x), pix) > 0,

and one can again impose the fixed endpoint conditions (1') or, more generally,

) ¥0) = yo, ¥() = y;.

As a third example, we consider Sturm-Liouville systems. These typically arise
from separating out the time variable from simply harmonic solutions of time- .
dependent problems such as that of a vibrating string. They are defined by
homogeneous linear DE’s of the form

©) POWT + (Ap(x) + g(x)y = O,

in which 1 is a parameter, and homogeneous linear boundary conditions of the
form (1') or, more generally,

) %)(0) + oy'(0) = a;¥(c) + B1y'(c) = 0.

It is well known that any S-L system admits an infinite sequence {4;} of real eigen-
values A, < A, < A3 < --- with 4, - oo, for which there are nontrivial solutions
called eigenfunctions.

In summary, we have described above two boundary value problems and one
eigenvalue—eigenfunction problem which have important -higher-dimensional
elliptic analogues. '

2. Dirichlet and related problems. The most deeply studied elliptic boundary
value (B.V.) problem is the Dirichlet problem, which can be described in physical
terms as follows.

Let a homogeneous solid occupy a bounded region R in n-dimensional space,
and let its boundary dR be kept at a specified temperature distribution g(y)
(v € OR). What will be the equilibrium temperature distribution u(x) in the interior? »
Under the physically plausible (and fairly realistic) assumption that the flow
(“flux”’) of heat at any point is proportional to the temperature gradient Vu there,
one can show that the temperature must satisfy the Laplace equation:

)] Viu=) — =0 in R (n space dimensions).

The Dirichlet problem is to find a function which satisfies (4) in R and

(4a) u(y) = gy) on JR,

and is continuous in the closed domain R v OR.

The Laplace equation (4) arises in a variety of other physical contexts, often in
combination with other boundary conditions. In general, a function which satisfies
(4) is called harmonic (in R); and the study of harmonic functions (about which
1 shall say more in the next lecture) is called potential theory. -
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For example (sec [K] or [7]"), the Laplace equation (4) is satisfied in empty
regions of space by gravitational, electrostatic and magnetostatic potentials. Thus
the electrostatic potential due to a charged conductor satisfies (4) in the exterior
of R and, in suitable units,

(4b) u=1 on OR, u~C/r as r— w.

The problem of solving (4) and (4b) is called the conductor problem, and the
constant C is called the capacity of the conductor. Many other problems of
potential theory are described in Bergman—Schiffer [1].

Likewise, the irrotational flows of an incompressible fluid studied in classical
hydrodynamics [5, Chaps IV-VI] have a “‘velocity potential” which satisfies (4).
For liquids of (nearly) constant density, this remains true under the action of
gravity, a’ fact which makes (4) applicable also to some problems of petroleum
reservoir mechanics in a homogeneous medium (soil).2

However, the boundary conditions which are appropriate for these applications
are often quite different from those of (4a). Thus, in hydrodynamical applications,
the usual boundary conditions amount to specifying normal derivatives,® or

(4c) dufon = f;(y) on JR.

The problem of finding a harmonic function with giverf normal derivatives on the
boundary is called the Neumann problem.

More generally, in the theory of heat conductlon it is often assumed that a solid
loses heat to the surrounding air at a rate roughly proportional to the excess
surface temperature (Newton’s “Law of Cooling”). This leads one to try to solve
(4) for the boundary conditions

(4d) Oufon + ku = kg(y) = h(y) on OR.

(If the conductor is cut out of sheet metal, one may look instead for functions
which satisfly (4a) and the modified Helmholtz DE: u,, + u,, = ku, k > 0, instead
of (4) inside the conductor.)

3. Membranes; source problems. Potential theory is concerned not only with
harmonic functions, but also with solving the Poisson equation

) =V2u = f(x)

in free space and in bounded domains subject to various boundary conditions.
Evidently, the Poisson equation (5) is the natural generalization to n > 1 space
dimensions of the DE (1) for the loaded string problem. Indeed, when n = 2, the
DE (5) is satisfied by the transverse deflection z = u(x, y) of a horizontal membrane

! Numbers in square brackets refer to the references listed at the end of the lecture; letters in square
brackets to the list of general references after the preface.

2See (8]; also P. Ya. Polubarinova-Kochina, Advances in Applied Mathematics, 2 (1951), pp.
153-221,and A. E. Scheidegger, Physics of Flow through Porous Media, Macmillan, 1957.
" 3 Here and below,' 0/0n means exterior normal derivative.



4 LECTURE 1

(or* drumhead ') under uniform lateral tension 7, which supports a load of Tf(x)
per unit area.

For such a membrane, held in a fixed rigid frame, the appropriate boundary
condition is

(5) u=0- on 0JR, the membrane boundary.

To solve (5) in R subject to the boundary condmon (5') will be one of our main
concerns below.

When n = 3, the DE (5) is also satisfied by the gravitational potential of a con-
tinuous distribution of matter with density 4zf(x) per unit volume. Likewise, it
is satisfied by the electrostatic potential of a continuous charge distribution having
this density. These observations lead to other boundary value problems in the
Poisson equation.

A more general elliptic DE is

(6) =V - [p(x)Vu] = f(x).

It has the notable property of being self-adjoint, which implies that its Green’s
function G(x, &) (see Lecture 2, §4) is symmelrtc in the sense that G(x, ) = G(§, x),
and that its eigenvalues are real.

This DE is satisfied by the temperature distribution u(x) in a solid having space-

dependent thermal conductivity p(x), in which heat is being produced at the
rate of f(x)/4n per unit volume and time. Since one may think of f(x) as repre-
senting a source of heat, the DE (6) for suitable boundary conditions is often said
to define a source problem. Such source problems arise typically in the analysis
of diffusion phenomena. The DE (6) also arises as Darcy’s Law in petroleum
reservoir mechanics [8, p. 242], with p the (soil) permeability, u the pressure, and
f(x) = pg constant. In practice, p may vary by orders of magnitude—like thermal
and electrical conductivity.

Diffusion with convection. Another important family of elliptic DE’s describes
convection with diffusion. For any velocity-field (U(x, y), V(x, y)) with divergence
U, + V, =0, the DE

Up, + Vo, = ocVz’(p,v a>0,

can be interpreted in this way. One should remember that, although this DE is
elliptic, convection dominates diffusion in the long run, so that in many respects
its solutions behave like solutions of the hyperbolic DE U¢, + Ve, = 0, but
smoothed or “‘mollified™ locally.

4. Reduced wave equation. The equation of a transversely vibrating membrane is
z!t = CZ('zxx + Zyy)’

‘where ¢ = (T/p)"/? is the wave velocity (T the tension and p the density per unit
area of the membrane, both assumed constant). Simple harmonic (in time)
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oscillations of such a membrane are clearly given by setting
sin
S

2(x,y,1) = “("’y.){co }kz,

where u(x, y) is a solution of the Helmholtz or reduced wave equation

" o*u

23
i=1 0x;

(™, Viu + k*u = 0, V2 =

g

with n =2 and x, = x, y; = y. Hence, to find the possible simply harmonic
vibrations of a membrane held in a rigid frame having a given contour dR, we
must find the solutions of the Helmholtz equation (7) subject to the boundary
condition ’

(7a) u=0 on ¢éR.

Similarly, in three-dimensional space, let u(x) = u(x, , z) be a solution of the
reduced wave equation (7) with n = 3 in a bounded domain R with boundary R,
and let

(7b) du/on =0 on OR.

sin . S
Then p(x,y,z,t) = u(x, y, z){cos}kt describes the pressure variations (from am-

bient pressure) in a standing sound wave with frequency ck/27 in a room (or organ
pipe) having the specified (rigid) boundary 0R.

Just as in the case' of Sturm-Liouville systems (see § 1), each of the systems
(7){7a) and (7)-(7b) has a sequence of nontrivial solutions called the eigen-
functions of the system, whose eigenvalues 4; = k} are positive (or zero) and can
be arranged in ascending order:

)»1§22§A3§"’, lnTOO.

I shall discuss this “Ohm-Rayleigh principle”” in“the next lecture; various’
classical examples are worked out in textbooks on sound.*
Maxwell’s equations. By separating out the spatial variation of simply harmonic
(in time) ‘“‘standing wave™ solutions of Maxwell’s equations for electromagnetic
waves in a homogeneous medium, one is led to other solutions of the reduced
- wave equation. However, quantitative results about wave guides and scattering
are still usually obtained by analytical methods.® High-speed digital computers are
just beginning to be useful for solving Maxwell’s equations (cf. Lecture 9).

* PgM. Morse, Vibrations and Sound, McGraw-Hill, New York, 1936.

5 See R. E. Collin, Field Theory of Guided Waves, McGraw-Hill, New York, 1960, Chap. 8; L. Lewin,
Advanced Theory of Wave Guides, lliffe, London, 1951 ; N. Markuvitz, Waveguide Handbook, McGraw-
" Hill, New York, 1951. '

—— ———



6 LECTURE 1

5. Thin beams; splines. The problems discussed so far have all involved second
order elliptic DE’s. In solid mechanics, fourth order elliptic DE’s and systems are
more prevalent.

The simplest such problems refer to the small deflections of a thin beam or -
“rod” by an applied transverse ‘‘load’ or force distribution. This problem was
solved mathematically by the Bernoullis and Euler, who assumed that the beam
or “elastica’” was homogeneous, i.e., had the same physical characteristics in-all
cross-sections. From Hooke’s law, D. Bernoulli deduced in 1706 that, in the linear
or “small deflection’’ approximation (see § 8), the deflection of the centerline of the
beam should satisfy (see [9]):

(8) u(x) = d*ujdx* = f(x), as<x=h.

Here f(x) is the quotient of the applied transverse load per unit length by the
“stiffness”; of the beam, whose undeflected centerline is supposed to extend along
the x-axis from x = ato x = b.

Thin beam problems can involve various sets of endpoint conditions, notably
the following [CH, pp. 295-296]:

(8a) u(a)=u"(@)=u'd)=u"(b)=0 (free ends)
(8b) u(a) = u"(a) = u(b) = u’(b) =0 (simply supported ends)
(8c) wa) = u'(a) =ud)=ub)=0 (clamped ends).

'Regardless of the endpoint condition selected, the general solution of the DE (8)
is the sum of any particular solution and some cubic polynomial, since the general
solution of the ordinary DE u'(x) = 0 is a cubic polynomial. Hence, to solve
any of the above two-endpoint problems for a thin beam, one can proceed as in
solving (1).

Namely, one can first compute a particular solution U(x) of (8) by performing
four successive quadratures on f(x) numerically (e.g., by Simpson’s rule). One then
forms

9) u(x) = U(X) + co + ¢1x + X% + ¢3x°,

regarding the coefficients ¢; as unknown coefficients to be determined from the

four endpoint conditions.
Cubic splines. A very useful special case corresponds to “point-loads” con-

centrated at some sequence of points x;:
Tia=Xg<X; <X;<:-<X_1<X,=b of [a,b].
Since, for any ¢ < d,

d d
Wd) — () = f W(x) = f fx)dx,

a total load of w, concentrated at x; may be expected to produce a jump of
w; = u”(x;") — u”(x;") in the third derivative of the deflection function, whose
second derivative is presumably continuous. This suggests that the solutions are
given by the following class of funttions. ‘
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DEFINITION. A cubic spline function on [a, b] with joints (or “knots™) at the
X, i=1,-- — 1, is a function u € C*[a, b] whlch 1s express:ble on each seg-
ment (x;_, X ) by a cublc polynomial pix) = a,kx

Splines have been used by naval architects for many years to generate mechani-
cally smooth curves which pass through (or “interpolate™ to) preassigned points;
as we shall see in Lectures 7 and 8, ‘‘spline functions™ are also useful for com-
puting accurate numerical solutions of elliptic DE’s.

6. Plates and shells. Solid mechanics provides many challenging elliptic prob-
Jems for the mathematician to solve. One of the simplest of these is provided by
Kirchhoff’s theory of a transversely loaded flat plate. The transverse deflection
satisfies the deceptively simple-looking biharmonic equation

(10) Viu = f(x,y).

As in the one-dimensional analogue of the thin beam, one may have any of a fairly
large variety of boundary conditions.

It may surprise readers to know that the DE(10) is the- Euler-Lagrange DE
associated with the variational condition 8/ = 0 for a whole family of integrals

J: (10) is implied by
(11) 6[ j f (V20 + (1 = W)ty = uzyl}} dxdy =0

for any value of the ““Poisson ratio” v (see [11]).
A parallel-loaded homogeneous plate with body force “load” potential V(x, y)
has stress components o,,0, and 7, most easily expressed in terms of the Airy

stress function ¢(x, y):
Ox = Pyy + V, Oy = QPux + V, Txy = —Pxy-
The conditions for static equilibrium are given by the compatibility relations 4

1 —2v

Vip + T VIV = 0.

If V is harmonic, then ¢ is biharmonic.
Curvilinear elastic shells satisfy much more complicated but analogous systems
of linear elliptic equations with variable coefficients.

7. Multigroup diffusion. Another important area of application for numerical
methods is provided by the steady state multigroup diffusion equations of nuclear
reactor theory. These constitute a cyclic system of DE’s for source problems, inan
idealized thermal reactor, typically of the form [2]:

(12) : otpy — V- ([D(x)Ve]) = vo,0,
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and
(12) ofo;— V- [D(X)Vo,] = 6,10,
for i=2,---, n. Here the coefficients o} and o, < ¢} are typically piecewise

constant. These DE’s are to hold in the “reactor domain” R; on the boundary
OR of R, it is assumed that

(13) l0g/on+ ¢, =0, i=1,---,n [,>0.

In the preceding DE’s, the dependent variable ¢(x) stands for the “flux’ level
at x of neutrons of the ith velocity group and it equals v;N(x), where v; is the
(nominal) mean velocity of neutrons of the ith velocity group and N;(x) is the
expected neutron density (population per unit volume) in the vicinity of x; the
D, are the mean “diffusivities” of neutrons of the ith velocity group; o and
o, are the (macroscopic) absorption and down-scattering cross-sections; v is
the mean neutron yield per fission. '

The problem is an eigenfunction problem; of greatest practical interest are the
smallest eigenvalue v, (the critical yield per fission) and the associated (positive)
critical flux distribution.

8. Some nonlinear problems. Many important elliptic problems are nonlinear;
I shall here describe only a few examples of such problems.

Probably the simplest nonlinear elliptic problem is that of a loaded string or
cable. If we use the exact expression for the curvature k = y“/(1 + y'?)*?, the DE
of a loaded string under a horizontal tension T, and vertical load w(x) per unit
length is

(14 Toy" = wix)(L + y?)'"2

The case of a catenary is w(x) = (1 + y'3)!/2
- Only slightly less simple is the nonlinear thin beam problem, whose DE is (in

terms of arc-length s):
d*e . dy
—_— = —_— = t n .
(15) i + Rsing =0, T an ¢
Its solutions are described in detail in Love’s Elasticity, § 262.
Plateau problem. The simplest nonlinear elliptic problem whose solution is a
function of two independent variables is probably the Plateau problem [CH, vol.

2, p. 223]. In its simplest form, the problem is to minimize the area

(16) A= J.f(l + 2,2 + z,7) 2 dx dy

of a variable surface spanned by a fixed simple closed curve y: x = x(6), y = y(6),
z = #(#). Physically, this surface can be realized by a thin soap-film spanned by a
wire loop tracing out the curve y (a special-purpose ‘“‘analogue computer™).

The associated Euler-Lagrange variational equation is ‘

(17) (! + 2,2)z,, — 22,2,27,, + [1 + 2,%)z,, = 0,

XTyTxy



TYPICAL ELLIPTIC PROBLEMS 9

which clearly reduces to the Laplace DE for a nearly flat surface, with z, « 1,
z, « 1. This is also the DE of a surface with mean curvature zero.

A related nonlinear problem is that of determining (e.g., computing) the surface
or surfaces with given constant mean curvature (k, + k,)/2 = M spanned by y.

Nonlinear heat conduction. Actually, conductivity and specific heat are tem-
perature-dependent, while heat transfer rates in fluids depend on the temperature
gradient as well as the temperature. Therefore, more exact mathematical descrip-
tions of heat conduction lead to nonlinear DE’s.

Of these, V2u + e* = 0 has been a favorite among mathematicians because of its
simplicity, but it is by no means typical. Some idea of the complexity of real heat
transfer problems can be obtained by skimming through [3, Chap. 26].

9. Concluding remarks. Indeed, I want to emphasize the fact that only extremely
simple or extremely important scientific and engineering problems can be profit-
ably treated on today’s computers. In my lectures, 1 shall emphasize such very
simple problems, because their theory and computational techniques for.solving
them are relatively far advanced and well correlated with numerical results. In
doing this, I shall try to steer a middle course between extremely general ‘‘numerical
analysis without numbers,” in which theorems typically refer to systems of rth
order DE’s'in n independent variables, and “numbers without aralysis,” alias
“experimental arithmetic.”
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