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Editor’'s Preface

This study constitutes papers presented at the Symposium on Sto-
chastic Problems in Mechanics held at the University of Waterloo
during September 24-26, 1973. ‘

In the past, many Symposia have been held dealing with
specific applications of stochastic processes such as stochastic
stability, stochastic control, stochastic hydraulics, safety and
reliability, etc. However, it has become increasingly apparent
that many of the techniques employed in one area may find appli-
cation in seemingly different areas. It was this overlap that
provided the impetus for this Symposium.

Essentially six general areas were chosen to be pre-
sented, namely:

General Theory

Dynamic Systems

Structural Systems

Simulation and Numerical Methods
Fatigue

Hydrology and Fluid Mechanics

Participation was by invitation and was limited to
about fifty-one persons in order to encourage active discussion.
General lectures were presented by:

R.A. Heller

Virginia Polytechnic Institute

C.D. Johnson
University of Alabama

Y.K. Lin
University of Illinois

N.C. Matalas
U.S. Department of Interior Geological Survey

M. Shinozuka
Columbia University

S.K. Srinivasan
Indian Institute of Technology, Madras



In addition, eighteen papers on specific problems were
presented. The contents of the Study have been rearranged from
that of the Symposium in six chapters in order to reflect more
closely the general areas.

The organizing committee consisted of S.T. Ariaratnam,
C.V.B. Gowda, D.E. Grierson, H.H.E. Leipholz, W. Lennox, and
N.C. Lind. The committee expresses its gratitude to the guest
speakers and the participants for their contribution to the suc-
cess of the Symposium. In addition, the committee gratefully
acknowledges the assistance of Miss Jacklyn Campbell and Miss
Linda Heit.

The Symposium and the publication of the Study were
sponsored by the Solid Mechanics Division, University of Waterloo,
and made possible through the financial support provided by the
Faculty of Engineering and the University Research Council.

S.T. Ariaratnam

Waterloo, 1974
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GENERAL THEORY OF STOCHASTIC PROCESSES

S.K. Srinivasan

Indian Institute of Technology

INTRODUCTION

The theory of stochastic processes is now finding increasing
applications to problems in physical sciences which deal with
processes involving some random element in their structure.

The tendency to use the results of stochastic theory in building
up of models in applied science and engineering has increased
considerably during the past decade and this factor has contri-
buted very much in providing further impetus for the development
of the theory itself. In addition to the déep impact on physical
sciences, the theory of stochastic processes plays a vital role

in the development of other realms of thought ranging from social
and political sciences to ecological situations. In view of
these developments, the formal probabilist is, so to say, unable
to cope up with the increasing demand of these various disciplines
Instances are not lacking when impatient engineers or applied
scientists have successfully ventured out in search of new results

in stochastic processes. The present symposium is in such a
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spirit.

The object of this survey is to present the general
methods of stochastic -processes that have an impact on the prob-
lems of physical sciences. The emphasis will be on the methods
of analysis rather than on the actual solution of the problems.
In the next section, we present a summary of the general methods
of analysing.tbe structural properties of stogh@stic prolesses.
Then we deal with a fpecial class of stochastis processes known
as point processes. The.next section is devoted to the response.
phenomena due to stochastic impulses.. .It is.in this context we
try to demonstrate how non-Markov processes caw be analysed.

- The final part of this section sums up the pressémt status of
the subject from the viewpoint of applications.

2. REPRESENTATION AND STRUCTURAL PROPERTIES
2.1 Preliminary Definitions

A stochastic process is simply a collection of raﬁdﬂq‘vagégb;as
{X(t) , t € T} where T is an arbitrary set. Naturally the collec-
tion of random variables is an ordered one if T. is onme-dimensional.
Most of. pur déa;}ngs»wilk caorresppnd, only to th,s, cage and the
reason for such 4 sever restrictjon will become clgar presently.
ofFom classical probability thepry it is clear that the stachastic
Process X(t) is cemplgtely specified if ithe joint diggributional
R Prbpertiqs of the collections {X(t;) : tl,g.xg,ngghll,,Xqug,:
Aar by B Thy oo {X(ty ) X(Ep, e X(t) D2y, thaey tp € Th o -
;. Are specified. Next, we note that S is the spmple space of.
‘ ;gvent;, then by definitien X(t)-is a mapping from the sample

_space into the set of reals; in other words, .. . ;. = R
: Loites L . - A O S S
Shed o . .kaf :ASXEF) AL A V2 Y
where A, is a subset (npt necessarily proper) of R, the reals.,

.- Jhis gpebles,ys to jntroduce the notiom of state space of, fhe
stothastic, propuss,  The S, S iy the state spage e ghe. . |

L M
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stochastic process {X(t) : t € T} where
A, . (2.2)

We can divide the stochastic process broadly into two classes
according as )

(i) S is discrete

(ii) S has the cardinality of the continuum
For a stochastic process of type (ij, we can without loss of
generality take S to be the set of integers. A stochastic pro-
cess of type (i) is completely specified by the sequence of
joint probability mass functioms Wn(il,iz,..in; tl,tz,..tn)
(n=1,2,...) for all tj € T and all integers il’ iz,...in where

“n(11’12""1n‘ tl,tz,...,tn) : (2.3)

= Pr{X(tl) = il,X(tz) = i2,...,X(tn) S in}.

On the other hand, a stochastic process of>fype (ii) is completely
specified by the sequence of joint probability distribution
functions pn(xl,xz,...,xn; tl,tz,...,tn) (n=1,2,...) for all

tj e T and xj € S where

pn(xl,xz,..., xn; tl,tz,...,tn) (2.4)

= PriX(t)) < x,X(t,) < x,5,.. X(t) < x !}

or equivalently by the sequence of joint probability density
function ﬂn(xl,xz,...xn; tl’tz""’tn) (n=1,2,...) for all

tj € T and Xj € S where

nn(xl,xz,...,xn; ti, t2,...,tn) (2.5)
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= lim Pr{ X, j_X(tl) < x, + A

1 1’
A,A_,...A 20
1’72 n X, f.X(tz) < X, + AZ
x) < X(E) < xpo+ A} AL, A

We can have a further subdivision of each of the proces-
ses (i) and (ii) according as T is discrete or has the cardinality
of the continuum. We shall not do so as it does not lead to any
conceptual simplification.

We can use the law of multiplication of probabilities
to express the joint probability density (or mass) functions

(2.5) (or 2.3)) in terms of the conditional density (or mass)

functions.
wn(xl,xz,...,xn; tl, tz,...,tn) 4 (2.6)
= 1 ' .
MOt DT (gt X)L T T (kg el 5%),T))
1] N . .
. ﬂn(xn,tnlxl,tl,xz,tz,...,xn_l,tn_l)
where
1] . .
ﬂm(xm,tm xl,tl, xz,tz, "'xm-l’tm-l) (2.7)

= 1im Prix_ < X(t.) < x_ + A_|X(t)) = x,,
A+0 m m m m 1 1

..X(tm_l) = X

<m<
m—l} 2 —-m =n

However, it is clear that the conditional density functions are
equally difficult to deal with. Let us assume t < t2 cee b
Note that this type of ordering is possible if and only if T is
one dimensional and for this reason we shall assume T be one
dimensional. If we now assume '

1 .
ﬂm(xm,tmlxl,tl,xz,tz,...xm_l,tm_l) (2.8)

-_-/' =
ﬂz(xm’tm‘xm-l’tm-l) m=2,3,..
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then it is easy to determine the functions nn(..,.) provided
we are given the functions nl(.,.) and né(.,. ..). For in

such a situation (2.6) can be written as

ﬂn(xl,xz,...xn; tl,tz,...tn) (2.9)

| 1]
= My (Xt IT (5t 1%y, (x5, t4 x5t )

coemh(x ot | x

n n-1’ttn~1)'

A stochastic process endowed with the property expressed by (2.8)
is called a Markov process. Thus a Markov process is a stochas-
tic process in which the conditional density function of the
random variable X(tn) conditional upon X(tl) = Xy X(tz) = Xpsens
X(tn_l) =X depends only on X1 and tn—l provided tl < tn—l’
t2 < tn-l""tn-z < tn-l’ tl,tz...tn_1 < tn. In other words

the conditional density function (2.7) depends on the value given
to be assumed by the random variable at the most recent parame-
tric value (tn_1 in this case) prior to t and is independent

of the prehistory (so far as the values assumed by X(.) are

concerned) prior to t It is clear that such a concept is

possible only if the gnéex set T is such that its members can
be well ordered like the real number system. At the outset we
would like to make it clear that the possibility of a meaningful
development of the theory of stochastic processes is severely
restricted to the case when T is one dimensional.

A Markov stochastic process is completely specified'
by the two functions nl(:,.) and né(. .}. The most interesting
result is that the function nz(..,..) satisfies an integral equa-
tion by virtue of the Markov nature of the process. To demon-
strate this let us consider any three points tl,tz,t3 in the
set T such that t1 <t, <t Then it is obvious that the func-
tion

1 . N .
“3(x2’t2’x3’t3 xl,tl) 2.10)
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= 1im "~ Pr {x2< X(t,)) x, * bys
AI,A2+0 -
xg < X(tg) < xg + AZIX(tl)~= xl}/AlAz
satisfies the relation "
my(xystoixgatslxynty) = T (kg5 g |Xy0 T )M (xp0 ) |20 4)
(2.11)

Integrating over X, we obtain*
ﬂ(xz,tslxl,t1)=fﬂ(x3,t3Ixz,tz)ﬂ(xz,tzlxl,tl)dxz (2.12)

The above integral equation is known as Chapman-Kolmogorov rela-
tion. If the state space is discrete, (2.12) takes the form

n(m,t3|n,tl) = i ﬂ(m,tsll,tz) ﬂ(l,tzln,tl) (2.13)
The above equation can be/written in matrix notation:
M(tg,t)) = Nty t (.t (2.14)

where H(t3,t1) is the matrix with elements w(m,t3| n,tl). Thus
the problem becomes very simple if the state space were to be
finite. For in such a case, we need solve the problem of iden-
tifying the finite matryges I with positive elements subject to
the condition expresse&'by (2.14) and the condition that each
row of I adds up to unity. Of course in the more general case
we have to consider infinife matrices. A detailed account of
such processes can be found in Kemeny and Snell (1960) and Par-
zen (1962).

Stochastic g%bgésses which do not satisfy the relation
(2.8) form the residuary class known as non-Markov processes.

Such processes are indeed difficult to deal with directly. In

*Erom now.on we use the functional symbol m instead of né.
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fact non-Markov processes can be visualized as having been gene-
rated from Markov processes. To illustrate this point let us

consider a mapping f defined by
f
f @ X(t) » Y(t) (2.15)

where X(t) is a Markov process and f a many-to-one mapping.
Thus when we observe the process Y(t) the points of the state )
space not separated by f are lumped together and hence the Markq;,/'av
vian character is lost when we pass from X(t) to Y(t). Kendall
(1964) calls such a process as ''collapsed" or "lumped' Markov
process. However in many practical problems Y(t) is the only
process that is being observed and we may have to seek the func-
tion f and a Markov process X(t) which is the pre-image of Y(t)
under £. This is by no means an easy job. Some simple examples
were constructed and analysed by Cox (1955) and Mathews and
Srinivasan (1956). In section 3 we shall see how non-Markovian
processes can be tackled if we restrict ourselves to certain

special types of stochastic processes.
2.2 Stationarity

There is a dichotomy in stochastic processes that is of great
significance from the point of theory and applications. The
probabilistic structure of Xtt) may be independent of the origin
of reference of t. In other words the probabilistic structure
of X(t) may be invariant under arbitrary translation of t. In
such a case the stochastic process is said to be stationary, the
non-stationary processes forming the residuary class. There

are several degrees of stationarity and we shall mention a few
of the important ones, confining our attention when S has the
cardinality of the continuum. A stochastic process X(t) is said
to be -

(i) simply stationary if /
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m{x,t+h) = w(x,t) for arbitrary h and for all

xeS, teT. (2.16)
and (ii) completely stationary if
nm(xl,xz,...xm; t1+h, t2+h,...tm+h) (2.17)

= nm(xl,xz,...xm; tl,tz,...tm)

for arbitrary h and for all X4 e S, ti eT 1i=1,2,...m aﬁh
m=1,2,....

Very often the parameter t signifies time and in such
a case the origin is usually chosen at - ». Sometimes we may
not visualize the evolution of the process during the infinite
past and in such a case stationarity would mean invariance under
arbitrary but restricted time translation. Such processes are
called t-homogeneous processes. In practical situations it is
sufficient if we impose (2.17) for m = 2, in which case the pro-
cess is said to be stationary to second order.

If {X(t) : t €T} is a stationary Markov process,
then the Chapman-Kolmogorov relation can be written in a simpler
form. First we note that ﬂ(xz,tzlxl,tl) as defined by (2.7) is
a function of tz-tl only and setting tl = 0 without loss of
generality, we can denote ﬂ(xz,tzlxl,tl) simply by n(xz,tzlxl).

The Chapman-Kolmogorov relation (2.12) can be written as
ﬂ(xs,tslxl) = fﬂ(xz,tzle)n(xs,t3-t2|x2)dx2 (2.18)

<
0 t2 < t3

If the state space S is discrete, (2.18) takes the simple form

M(tg) = M(ty-t)) T(t,) (2.19)

0 < t2 < t3
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where H(tSJ is the matrix with elements ﬂ(m,tsln). The above
equation brings out the structure of the conditional probabilities.
In the more general case where S has the cardinality of the con-
tinuum, we can show that the kernel of the integral equation

(2.18) induces an operator p(t) on the Hilbert space of bounded

continuous functions over the reals given by
p(t) u(x) = Im(y,t|x) u(y) dy (2.20)

where u(x) is a bounded continuous function of its argument over
(-, +®). It is clear that (2.18) implies that

showing that the operators form a semi-group. Thus the theory

of semi—g}oup can be used to characterise the structure of the
functions m(.,. .). This is a very attractive and fruitful
method of dealing with Markov processes. A detailed account of
the general theory can be found in Loeve (1963) and Dyrkin (1965).
2.3 Kolmogorov-Fokker-Planck Equations

The stationary conditional probability densities m(.. .) can be
determined if m(.,A] L) is specified for infinitesimal A. There
is a class of stochastic processes for which nz(x,Alx') is

given by

T(x,A[x') = R(x[x")A + o(a) x # x' (2.22)

The above equation implies that there is a probability mass con-

centration at x = x', its magnitude being given by
1 - A/R(x|x") dx + o(4).

Using Dirac delta functions, we can provide a complete description
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of m(x,Alx") by

m(x,Alx") = AR(x|x') + 8(x-x"){1-AJR(x x')dx (2.23)

+ o(0)}

The above description implies that the sample paths of the sto-
chastic process X(t) consist of superpositions of step-functions.
A typical sample path is shown in Figure 1. The paths are
characterised by a finite number of jumps in any finite interval
provided SR(x|x')dx < «, the path remaining parallel to the t-

axis between any two jumps.

‘—.__‘———1
l}
I
I: 1 i
| ! '
': = ‘: —
T [ ! E
! t
X i |
! l
! i
, | !
—_—
t

Figure 1 - A Typical Sample Path of X(t)

If we set t3 = t, t2 = t3-A in (2.18) and make use of

(2.23), we find that in the 1imit as A tends to zero,

%? n(xs,t\xl) = —n(x3,t|x1)fR(x2|x3)dx2 (2.24)

+ fﬂ(xz,tlxl)R(x3|x2)dx2

an equation known as the Kolmogorov forward differential equation.
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If on the other hand we set t3 =t, t2 = A, we obtain in the

limit as A tends to zero

Bn(xs,t|x1)

5T = -Tr(xs,t|x1)fR(x2|x1)dx2 (2.25)

+ fn(xs,tlxz) R(lexl)dx2

which is known as the Kolmogorov backward differential equation.
A detailed discussion of these equations and their solution in
special cases can be found in Bharucha-Reid (1960). In passing
we note that (2.24) and (2.25) are equally valid in the case
when S is discrete.

There is another class of stationary stochastic proces-
ses for which the sample paths are continuous curves. To charac-
terise this class, we do not specify ﬂ(x,Alx') directly as in
(2.23). On the other hand we specify the conditional moments
of X(t+A) conditional on X(t) = x':

E{[X(t+8)]1"|X(t) = x'} a (x')4 + of8) (2.26)

) n=1,2,...m
o(d) n > m.

In this case, it can be shown that the Chapman-Kolmogorov rela-

tion leads to

(5-)(3-n a (0T, tx') (2.27)

an equation known after Fokker and Planck. A number of physical
processes involving some continuous diffusion like movement can
be described by the above equation. For a detailed account,

the reader is referred to Srinivasan and Vasudevan (1971).



12 STOCHASTIC PROBLEMS IN MECHANICS

2.4 Representation of Random Processes

%0 far we have dealt with Markov processes and outlined some
methods of characterising the conditional density functions.
The situation becomes slightly complex if we do not assume the
Markovian property. 1In this section we shall attempt to charac-
terise the processes that are stationary to second order but not
necessarily Markovian. We shall also deal with a slightly more
general case of complex random functions. In this general case,
the function defined by (2.1) must be assumed to map S into the
subset of complex numbers. Such stationary stochastic processes
were introduced by Khintchine (1934); Slutsky (1937) followed it
up and obtained a harmonic decomposition of random functions.
A detailed account of the decomposition can be found in a survey
by Moyal (1949). In this section we shall briefly mention some
of the attempts by Loeve and Cramer in providing representations
of random functions.

We start with some definitions. The first is continuity
in quadratic mean. We say that a random function X(t) is con-

tinuous at t in quadratic mean (q.m.) if

E(|x(t+h) - X(t)]%} >0  as h » 0. (2.28)
There is an equivalent condition for continuity in q.m. in terms
of the covariance function. We shall assume without loss of
generality that E{X(t)} = 0 since the expected value is a con-

stant by virtue of stationarity. The covariance function R(t,t')

of the process X(t) is defined as
R(t,t') = E{X(t) X(t")} (2.29)
We shall assume that

E[IX(t) %] for ¥ t £ T. (2.30)



