Ali Bahrami

obJect

Sy5t§

l.a'nguag‘

riented

using the unified modeli‘ng



OBJECT ORIENTED
SYSTEMS
DEVELOPMENT

Ali Bahrami
Boeing Applied Research & Technology

glf W Irwin
Tl McGraw-Hill
Boston Burr Ridge, IL Dubuque, 1A Madison, Wi New York San Francisco St. Louis

Bangkok Bogotd Caracas Lisbon London Madrid Mexico City
Milan New Delhi Seoul Singapore Sydney Taipei Toronto



Irwin/McGraw-Hill

A Division of The McGraw-Hill Companies

Vice president/Editor-in-chief: Michael W. Junior
Senior sponsoring editor: Rick Williamson
Developmental editor: Christine Wright
Marketing manager: Jodi McPherson

Project managers: Christine Parker/Alisa Watson
Production supervisor: Michael R. McCormick
Cover designer: Steven Vena/SrV Unlimited Design
Supplemental coordinator: Carol Loreth
Compositor: York Graphic Services, Inc.
Typeface: 10.5/12 Times Roman

Printer: R. R. Donnelley & Sons Company

OBJECT ORIENTED SYSTEMS DEVELOPMENT

Copyright © 1999 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States
of America. Except as permitted under the United States Copyright Act of 1976, no part of this publica-

tion may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval

system, without the prior written permission of the publisher.

This book is printed on acid-free paper.
1234567890DOC/DOCS9321098

ISBN 0-256-25348-X

Library of Congress Cataloging-in-Publication Data

Bahrami, Ali.
Object oriented systems development / Ali Bahrami.
p.cm.
Includes index.
ISBN 0-256-25348-X
1. System design. 2. Object-oriented programming (Computer
science) . Title.
QA76.9.588B33 1999
005.1°2—dc21 98-43126

http://www.mhhe.com



-
PREFACE

Over the last 20 years, software has become increasingly complex. Today’s ap-
plications are much more sophisticated and developed to more demanding re-
quirements than in the past. Software development techniques, tools, and tech-
nologies are changing rapidly. The software development methods we will use in
the next millennium will differ significantly from current methods, and we have
no crystal ball to tell us what methods or approaches will be used 20 years (or even
10 years) from now. However, it is apparent that object-oriented development and
its core concepts are here to stay. Many schools have recognized this and made the
object-oriented systems development course an essential part of the computer
information systems or computer science programs. This book is intended for an
introductory course in object-oriented systems development at the junior, senior,
or first-year graduate level. The main goal of this book is to provide a clear de-
scription of the concepts underlying object-oriented systems development.

This book is not centered around any particular programming language or
CASE tools. Instead, it discusses fundamental concepts that are applicable to a
variety of systems. However, the approach used in this book is based on the best
practices that have proven successful in system development and more specifically
the work done by Booch, Rumbaugh, and Jacobson. Furthermore, the book uses
the Object Management Group’s unified modeling language (UML) for modeling,
describing, analyzing, and designing an application.

This book has a number of unique features:

* Use of the unified modeling language.

* A comprehensive treatment of the entire system life cycle using object-oriented
techniques (with the exception of implementation).

* Inclusion of the Popkin System Architect CASE tool (as a software packaging
option).



PREFACE

* Coverage of introductory and essential topics as well as advanced subjects in
object-oriented systems development.

» Use of a use-case-driven approach.

* Use of a running case study for applying the lessons learned.

* Appendix providing a documentation template.

STRUCTURE OF THE BOOK

The book contains 14 chapters with a running case study for applying the concepts
learned. Each chapter concludes with a summary, a list of the key terms discussed
in the chapter, review questions, and problems that require students to apply their
knowledge based on the chapter material. The chapters are grouped into five parts.

Part One

The first part provides an overview of object-oriented systems development and
discusses why we should study it. In this part, we also look at object basics and
the systems development life cycle. Part One consists of Chapter 1, “Overview of
Object-Oriented Systems Development”; Chapter 2, “Object Basics”; and Chapter
3, “Object-Oriented Systems Development Life Cycle”

Part Two

The second part introduces various object-oriented methodologies, including the
unified approach, which will be used in this text, and an introduction to unified
modeling language (UML). This part consists of Chapter 4, “Object-Oriented
Methodologies,” and Chapter 5, “Unified Modeling Language.”

Part Three

The third part introduces object-oriented analysis, which is the process of extract-
ing the needs of a system and what the system must do to satisfy the users’ re-
quirements. The goal of object-oriented analysis first is to understand the domain
of the problem and the system’s responsibilities by understanding how the users
use or will use the system. Next, the classes that make up the system must be iden-
tified, as well as their behaviors, the relationships among them, and their structure.
This part consists of Chapter 6, “Object-Oriented Analysis Process: Identifying
Use Cases”; Chapter 7, “Object Analysis: Classification”; and Chapter 8, “Identi-
fying Object Relationships, Attributes, and Methods.”

Part Four

The fourth part covers object-oriented design. In this part, we will learn that the
classes identified during analysis provide us a framework for the design phase.
This part consists of Chapter 9, “The Object-Oriented Design Process and Design
Axioms”; Chapter 10, “Designing Classes”: Chapter 11, “Access Layer: Object
Storage and Object Interoperability”; and Chapter 12, “View Layer: Designing In-
terface Objects.”



Part Five

In this part, different dimensions of software quality and testing are d.iscussed.
Testing may be conducted for different reasons. Quality assurance testing looks
for potential problems in a proposed design. Usability testing, on the other hand,
tests how well the interface fits user needs and expectations. To ensure user satis-
Jaction, we must measure user satisfaction along the way as the design takes form.
Part Five consists of Chapter 13, “Software Quality Assurance,” and Chapter 14,
“System Usability and Measuring User Satisfaction.”

Appendices

The book includes two appendices. Appendix A provides a template for docu-
menting a system requirement. The template can be to create an effective system
document. Finally, Appendix B provides an overview of Windows and graphical
user interface (GUI) basics.

INSTRUCTIONAL SUPPORT MATERIAL

The text is accompanied by an Instructor’s CD-ROM. The CD-ROM contains files
for an Instructor’s Manual consisting of a lecture outline, teaching suggestions,
comprehensive Power Point classroom presentation files, the user satisfaction test
spreadsheet (see Chapter 14), answers to selected problems and questions, and test
bank and computerized testing software with multiple-choice and short-answer
questions.

SOFTWARE PACKAGING OPTIONS

Popkin’s System Architect CASE tool is available as a packaging option with this
text.

ACKNOWLEDGMENTS

No textbook can be published without the involvement of many people, and I
would like to acknowledge those who have helped bring this book to fruition. I am
grateful, first, to my wife Sue and my older daughter Ava, who have put up with
me for the past four years. The publication of this book would not have been pos-
sible without the vision and foresight of my editor, Rick Williamson, and the ex-
pertise of developmental editor Christine Wright. I am grateful for their support in
this project. My special thanks go to Christine Parker and Alisa Watson, the
project managers who kept everything on time.

This book has taken four years to complete. It was reviewed by a number of re-
viewers at different stages of its development and rewritten three times based on
the reviewers’ comments and suggestions. I thank the reviewers for their con-
structive comments and encouragement. Their comments have materially enhanced
the final copy of this book. These reviewers include

PREFACE XIX



XX PREFACE

Joseph H. Austin, Jr., Ambassador University

Chris Basso, Signex Corporation

John Carson, George Washington University

Kevin C. Dittman, Purdue University

Jane Fedorowicz, Bentley College

Bill C. Hardgrave, University of Arkansas—Fayetteville
Christopher G. Jones, Utah Valley State College

Jinwoo Kim, Yonsei University, Korea

Michael V. Mannino, University of Colorado—Denver
Stevan Mrdalj, Eastern Michigan University

Richard G. Ramirez, lowa State University

Elmer G. Swartzmeyer, Georgia State University

Jos Von Hillegersberg, Erasmus University, the Netherlands
Janet Wesson, University of Port Elizabeth, South Africa
David F. Wood, Robert Morris College

This book has been tested for three semesters in my object-oriented software de-
velopment course at Rhode Island College. I would like to thank all the students
who provided me with excellent feedback. Friends and colleagues, who have
given me support, ideas, and comments, were invaluable. The friends who have
materially contributed to this project include Dr. Crist Costa and Professor Jules
Cohen.

Although my father, who encouraged me to write this book, could not see its
finish, his spirit was with me throughout the project and kept me going. Last but
not least, my youngest daughter was born during the final stages of the book. Her
unconditional love energized me to finish this book.

Ali Bahrami
Boeing Applied Research & Technology



Preface

XV

PART ONE

Introduction

1. AN OVERVIEW OF OBJECT-
ORIENTED SYSTEMS
DEVELOPMENT

1.1 Introduction

1.2 Two Orthogonal Views of the
Software

1.3 Object-Oriented Systems
Development Methodology

1.4 Why an Object Orientation?

1.5 Overview of the Unified
Approach

1.6 Organization of This Book

1.7 Summary

OBJECT BASICS

2.1 Introduction

2.2 An Object-Oriented Philosophy

N

2.3 Objects
2.4 Objects Are Grouped in Classes

2.5 Attributes: Object State and
Properties

2.6 Object Behavior and Methods
2.7 Objects Respond to Messages
2.8 Encapsulation and Information
Hiding
2.9 Class Hierarchy
2.9.1 Inheritance
2.9.2 Multiple Inheritance
2.10 Polymorphism

2.11 Object Relationships and
Associations

2.11.1 Consumer-Producer
Association

2.12 Aggregations and Object
Containment

2.13 Case Study: A Payroll Program
2.13.1 Structured Approach

2.13.2 The Object-Oriented
Approach

20
21
23
25
25

26

26

27
28
28



Vil CONTENTS

2.14 Advanced Topics
2.14.1 Object and Identity
2.14.2 Static and Dynamic
Binding
2.14.3 Object Persistence
2.14.4 Meta-Classes
2.15 Summary

3. OBJECT-ORIENTED SYSTEMS

DEVELOPMENT LIFE CYCLE
3.1 Introduction

3.2 The Software Development
Process

3.3 Building High-Quality Software

3.4 Object-Oriented Systems
Development: A Use-Case
Driven Approach

3.4.1 Object-Oriented Analysis—

Use-Case Driven
3.4.2 Object-Oriented Design
3.4.3 Prototyping

3.4.4 Implementation: Component-

Based Development
3.4.5 Incremental Testing
3.5 Reusability
3.6 Summary

32
32

34
34
34

39
39

40

45
47
47

53
53
54

PART TWO

Methodology, Modeling, and
Unified Modeling Language

4. OBJECT-ORIENTED

METHODOLOGIES

4.1 Introduction: Toward
Unification—Too Many
Methodologies

4.2 Survey of Some of the Object-

Oriented Methodologies

61

61

62

4.3

4.4

4.5

4.6

4.7
48

4.9

Rumbaugh et al.'s Object
Modeling Technique

4.3.1 The Object Model

4.3.2 The OMT Dynamic Model
4.3.3 The OMT Functional Model
The Booch Methodology

4.4.1 The Macro Development
Process

4.4.2 The Micro Development
Process

The Jacobson et al.
Methodologies

4.5.1 Use Cases

4.5.2 Object-Oriented Software
Engineering: Objectory

4.5.3 Object-Oriented Business
Engineering

Patterns

4.6.1 Generative and
Nongenerative Patterns

4.6.2 Patterns Template

4.6.3 Antipatterns

4.6.4 Capturing Patterns
Frameworks

The Unified Approach

4.8.1 Object-Oriented Analysis
4.8.2 Object-Oriented Design

4.8.3 Iterative Development and
Continuous Testing

4.8.4 Modeling Based on the
Unified Modeling Language

4.8.5 The UA Proposed
Repository

4.8.6 The Layered Approach to
Software Development

4.8.6.1 The Business Layer

4.8.6.2 The User Interface (View)

Layer
4.8.6.3 The Access Layer
Summary

63
63
63

65

66

67

68
68

70

71
71

73
74
76
76
77
78

80

80

81

82
83

84
84
84



CONTENTS X

5. UNIFIED MODELING LANGUAGE 39 5.10.2 Note 117
5.1 Introduction 89 5.10.3 Stereotype 117
5.2 Static and Dynamic Models 90 5.11 UML Meta-Model 117

5.2.1 Static Model 90 5.12 Summary 118
5.2.2 Dynamic Model 91
5.3 Why Modeling? 91
5.4 Introduction to the Unified
Modefing Languiage 2
5.5 UML Diagrams 93
5.6 UML Class Diagram ° Objeci-Oriented Analysis:
5.6.1 Class Notation: Static Use-Case Driven
Structure 94
5.6.2 Object Diagram 94 6. OBJECT-ORIENTED ANALYSIS
5.6.3 Class Interface Notation 95 PROCESS: IDENTIFYING USE
5.6.4 Binary Association Notation 95 CASES 125
5.6.5 Association Role 95 6.1 Introduction 125
5.6.6 Qualifier 96 6.2 Why Analysis Is a Difficult
5.6.7 Multiplicity 97 Activity 126
5.6.8 OR Association 97 6.3 Business Object Analysis:
5.6.9 Association Class 97 tl:::rrstandlng the Business 127
56.10 N-Ary Aésomatlon %8 6.4 Use-Case Driven Object-
5.6.11 Aggregation and Oriented Analysis: The Unified
Composition 99 Approach 128
3:6.12 Generalization 9 6.5 Business Process Modeling 129
5.7 Use-Case Diagram 101 6.6 Use-Case Model 129
5.8 UML Dynamic Modeling 103 6.6.1 Use Cases under the
5.8.1 UML Interaction Diagrams 104 Microscope 131
5.8.1.1 UML Sequence Diagram 104 6.6.2 Uses and Extends
5.8.1.2 UML Collaboration Diagram 105 Associations 133
5.82 UML Stat.e(‘:hart D iagram 106 6.6.3 Identifying the Actors 134
5-8.3 UML Activity Diagram 109 6.6.4 Guidelines for Finding Use
5.8.4 Implementation Diagrams 111 Cases 136
5.8.4.1 Component Diagram 112 6.6.5 How Detailed Must a Use
5.8.4.2 Deployment Diagram 112 Case Be? When to Stop
5.9 Model Management: Packages Decomposing and When
and Model Organization 114 to Continue 136
5.10 UML Extensibility 115 6.6.6 Dividing Use Cases into
5.10.1 Model Constraints and Packages 137

Comments 116 6.6.7 Naming a Use Case 137



X CONTENTS

6.7 Developing Effective
Documentation

6.7.1

6.7.2

Organizing Conventions
for Documentation

Guidelines for Developing
Effective Documentation

6.8 Case Study: Analyzing the
ViaNet Bank ATM—The
Use-Case Driven Process

6.8.1
6.8.2

6.8.3

Background

Identifying Actors and Use
Cases for the ViaNet Bank
ATM System

The ViaNet Bank ATM
Systems’ Packages

6.9 Summary

7. OBJECT ANALYSIS:
CLASSIFICATION

7.1 Introduction
7.2 Classifications Theory

7.3 Approaches for Identifying
Classes

7.4 Noun Phrase Approach

74.1

74.2

743

744

7.4.5

7.4.6

Identifying Tentative
Classes

Selecting Classes from
the Relevant and Fuzzy
Categories

The ViaNet Bank ATM
System: Identifying Classes
by Using Noun Phrase
Approach

Initial List of Noun Phrases:
Candidate Classes
Reviewing the Redundant
Classes and Building a
Common Vocabulary
Reviewing the Classes
Containing Adjectives

138

139

139

140

140

141

146
146

151
151
152

154
154

154

155

156

156

158

159

7.4.7 Reviewing the Possible
Attributes
7.4.8 Reviewing the Class
Purpose
7.5 Common Class Patterns
Approach
7.5.1 The ViaNet Bank ATM
System: Identifying Classes
by Using Common Class
Patterns
7.6 Use-Case Driven Approach:
Identifying Classes and Their
Behaviors through Sequence/
Collaboration Modeling
7.6.1 Implementation of Scenarios
7.6.2 The ViaNet Bank ATM
System: Decomposing a
Use-Case Scenario with a
Sequence Diagram: Object
Behavior Analysis
7.7 Classes, Responsibilities, and
Collaborators
7.7.1 Classes, Responsibilities,
and Collaborators Process
7.7.2 The ViaNet Bank ATM
System: Identifying Classes
by Using Classes,
Responsibilities, and
Collaborators
7.8 Naming Classes

7.9 Summary

8. IDENTIFYING OBJECT
RELATIONSHIPS, ATTRIBUTES,
AND METHODS

8.1 Introduction
8.2 Associations
8.2.1 Identifying Associations

8.2.2 Guidelines for Identifying
Associations

8.2.3 Common Association
Patterns

160

161

162

163

164

165

169

170

171
172
174

177
177
178
179

179

179



8.3

8.4

8.5

8.6

8.7

8.2.4 Eliminate Unnecessary
Associations

Super-Sub Class

Relationships

8.3.1 Guidelines for ldentifying
Super-Sub Relationship, a
Generalization

A-Part-of Relationships—

Aggregation

8.4.1 A-Part-of Relationship
Patterns

Case Study: Relationship

Analysis for the ViaNet Bank

ATM System

8.5.1 Identifying Classes’
Relationships

8.5.2 Developing a UML Class
Diagram Based on the
Use-Case Analysis

8.5.3 Defining Association
Relationships

8.5.4 Defining Super-Sub
Relationships

8.5.5 Identifying the Aggregation/

a-Part-of Relationship
Class Responsibility:
identifying Attributes and
Methods
Class Responsibility: Defining
Attributes by Analyzing Use
Cases and Other UML
Diagrams
8.7.1 Guidelines for Defining
Attributes
Defining Attributes for ViaNet
Bank Objects
8.8.1 Defining Attributes for the
BankClient Class
8.8.2 Defining Attributes for the
Account Class

8.8.3 Defining Attributes for the
Transaction Class

180

181

181

182

183

184

184

184

185

186

187

188

189

189

190

190

190

191

CONTENTS

8.8.4 Defining Attributes for the
ATMMachine Class
8.9 Object Responsibility: Methods
and Messages
8.9.1 Defining Methods by
Analyzing UML Diagrams
and Use Cases
8.10 Defining Methods for ViaNet
Bank Objects

8.10.1 Defining Account Class
Operations

8.10.2 Defining BankClient
Class Operations

X1

191

191

192

192

192

193

8.10.3 Defining CheckingAccount

Class Operations
8.11 Summary

193
194

PART FOUR

Object-Oriented Design

9. THE OBJECT-ORIENTED DESIGN

PROCESS AND DESIGN AXIOMS (99

9.1 Introduction

9.2 The Object-Oriented Design
Process

9.3 Object-Oriented Design Axioms
9.4 Corollaries

9.4.1 Corollary 1. Uncoupled
Design with Less
Information Content

9.4.1.1 Coupling
9.4.1.2 Cohesion
9.4.2 Corollary 2. Single Purpose

9.4.3 Corollary 3. Large Number
of Simpler Classes,
Reusability

199

200
202
203

204
204
206
206

206

9.4.4 Corollary 4. Strong Mapping 207
9.4.5 Corollary 5. Standardization 208



Xii CONTENTS

9.4.6 Corollary 6. Designing

9.4.6.1 Achieving Multiple Inheritance

with Inheritance

in a Single Inheritance
System

9.4.6.2 Avoiding Inheriting

Inappropriate Behaviors

9.5 Design Patterns
9.6 Summary

10. DESIGNING CLASSES

10.1
10.2

10.3

104

10.5

10.6

10.7

Introduction

The Object-Oriented Design

Philosophy

UML Object Constraint

Language

Designing Classes:

The Process

Class Visibility: Designing

Well-Defined Public, Private,

and Protected Protocols

10.5.1 Private and Protected
Protocol Layers: Internal

10.5.2 Public Protocol Layer:
External

Designing Classes: Refining

Attributes

10.6.1 Attribute Types

10.6.2 UML Attribute
Presentation

Refining Attributes for the

ViaNet Bank Objects

10.7.1 Refining Attributes for
the BankClient Class

10.7.2 Refining Attributes for
the Account Class

10.7.3 Refining Attributes for
the Transaction Class

Problem 10.1

208

211

211
212
214

217

217

217

218

219

219

221

221

221
222

222

223

223

223

224
224

10.7.4 Refining Attributes for
the ATMMachine Class

10.7.5 Refining Attributes for
the CheckingAccount
Class

10.7.6 Refining Attributes for
the SavingsAccount
Class

10.8 Designing Methods and
Protocols

10.8.1 Design Issues: Avoiding
Design Pitfalls

10.8.2 UML Operation
Presentation

10.9 Designing Methods for the
ViaNet Bank Objects

10.9.1 BankClient Class
VerifyPassword Method

10.9.2 Account Class Deposit
Method

10.9.3 Account Class Withdraw
Method

10.9.4 Account Class
CreateTransaction
Method

10.9.5 Checking Account Class
Withdraw Method

10.9.6 ATMMachine Class
Operations

10.10 Packages and Managing
Classes

10.11 Summary

11. ACCESS LAYER: OBJECT
STORAGE AND OBJECT
INTEROPERABILITY

11.1 Introduction

11.2 Object Store and Persistence:
An Overview

224

224

224

225

226

227

227

228

228

229

229

230

230

230
232

237
237

238



11.3

11.4

1.5

11.6

11.7

Database Management
Systems

11.3.1 Database Views
11.3.2 Database Models
11.3.2.1 Hierarchical Model
11.3.2.2 Network Model
11.3.2.3 Relational Model
11.3.3 Database Interface

11.3.3.1 Database Schema and
Data Definition Language

11.3.3.2 Data Manipulation
Language and Query
Capabilities

Logical and Physical Database

Organization and Access

Control

11.4.1 Shareability and
Transactions

11.4.2 Concurrency Policy

Distributed Databases and
Client-Server Computing

11.5.1 What Is Client-Server
Computing?

11.5.2 Distributed and
Cooperative Processing

Distributed Objects Computing:
The Next Generation of Client-
Server Computing

11.6.1 Common Object Request
Broker Architecture

11.6.2 Microsoft’s
ActiveX/DCOM

Object-Oriented Database
Management Systems:
The Pure World

11.7.1 Object-Oriented Databases
versus Traditional
Databases

239
240
240
240
241
241
242

242

242

243

243
244

245

245

248

250

251

252

252

254

CONTENTS Xiii

11.8 Object-Relational Systems:
The Practical World
11.8.1 Object-Relation Mapping
11.8.2 Table-Class Mapping
11.8.3 Table-Multiple Classes
Mapping
11.8.4 Table-Inherited Classes
Mapping
11.8.5 Tables-Inherited Classes
Mapping
11.8.6 Keys for Instance
Navigation
11.9 Multidatabase Systems

11.9.1 Open Database
Connectivity:
Multidatabase Application
Programming Interfaces

11.10 Designing Access Layer
Classes
11.10.1 The Process
11.11 Case Study: Designing the
Access Layer for the ViaNet
Bank ATM
11.11.1 Creating an Access
Class for the
BankClient Class

11.12 Summary

12. VIEW LAYER: DESIGNING
INTERFACE OBJECTS
12.1 introduction

12.2 User Interface Design as a
Creative Process

12.3 Designing View Layer Classes

12.4 Macro-Level Process:
Identifying View Classes by
Analyzing Use Cases

12.5 Micro-Level Process
12.5.1 UI Design Rule 1.

Making the Interface
Simple

258

258

259
260

262

264

265

269

269
275

281
281

281
284

285
287

286



XiV CONTENTS

12.6

12.7
12.8

12.5.2 UI Design Rule 2.
Making the Interface
Transparent and Natural

12.5.3 Ul Design Rule 3.
Allowing Users to Be in
Control of the Software

12.5.3.1 Make the Interface
Forgiving

12.5.3.2 Make the Interface Visual

12.5.3.3 Provide Immediate
Feedback

12.5.3.4 Avoid Modes

12.5.3.5 Make the Interface
Consistent

The Purpose of a View Layer

Interface

12.6.1 Guidelines for Designing
Forms and Data Entry
Windows

12.6.2 Guidelines for Designing
Dialog Boxes and Error
Messages

12.6.3 Guidelines for the
Command Buttons
Layout

12.6.4 Guidelines for Designing
Application Windows

12.6.5 Guidelines for Using
Colors

12.6.6 Guidelines for Using
Fonts
Prototyping the User Interface

Case Study: Designing User

Interface for the ViaNet Bank

ATM

12.8.1 The View Layer Macro
Process

12.8.2 The View Layer Micro
Process

12.8.3 The BankClientAccessUI
Interface Object

290

290

291
291

291
292

292

292

293

296

298

299

300

302

302

304

305

308

309

12.8.4 The MainUI Object
Interface

12.8.5 The AccountTransactionUI

Interface Object

12.8.6 The CheckingAccountUI

and SavingsAccountUI
Interface Objects

12.8.7 Defining the Interface
Behavior

12.8.7.1 Identifying Events and

309

309

311

311

Actions for the BankClientAc-

cessUI Interface Object

12.8.7.2 Identifying Events and
Actions for the MainUI
Interface Object

12.8.7.3 Identifying Events and
Actions for the Savings-

313

313

AccountUI Interface Object 314

12.8.7.4 Identifying Events and
Actions for the Account-
TransactionUl Interface
Object

12.9 Summary

315
317

Software Quality

13. SOFTWARE QUALITY

ASSURANCE

13.1 Introduction

13.2 Quality Assurance Tests

13.3 Testing Strategies
13.3.1 Black Box Testing
13.3.2 White Box Testing
13.3.3 Top-Down Testing
13.3.4 Bottom-Up Testing

13.4 Impact of Object Orientation
on Testing

13.4.1 Impact of Inheritance in
Testing

325
325
326
328
328
329
329
330

330

331



331
331

13.4.2 Reusability of Tests
13.5 Test Cases

13.5.1 Guidelines for Developing
Quality Assurance Test
Cases

13.6 Test Plan

13.6.1 Guidelines for Developing
Test Plans 334

13.7 Continuous Testing 335
13.8 Myers’s Debugging Principles 337

13.9 Case Study: Developing Test
Cases for the ViaNet Bank
ATM System

13.10 Summary

14. SYSTEM USABILITY AND MEA-
SURING USER SATISFACTION 341

332
333

337
338

14.1 Introduction 341
14.2 Usability Testing 343
14.2.1 Guidelines for Developing
Usability Testing 344
14.2.2 Recording the Usability
Test 345

CONTENTS XV

14.3 User Satisfaction Test 345
14.3.1 Guidelines for Developing
a User Satisfaction Test 346
14.4 A Tool For Analyzing User Satis-
faction: The User Satisfaction
Test Template 347
14.5 Case Study: Developing
Usability Test Plans and Test
Cases for the ViaNet Bank
ATM System 350
14.5.1 Develop Test Objectives 350
14.5.2 Develop Test Cases 350
14.5.3 Analyze the Tests 351
14.6 Summary 352
Appendices
Appendix A Document Template 355
Appendix B Introduction to
Graphical User Interface 381
Glossary 391
Index 399



INTRODUCTION

The objective of Part I is to provide an overview of object-oriented systems
development and why we should study it. In this part, we also look at ob-

ject basics and the systems development life cycle. Part I consists of Chap-
ters 1, 2, and 3.



