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PREFACE

Over the last 20 years, software has become increasingly complex. Today’s ap-
plications are much more sophisticated and developed to more demanding re-
quirements than in the past. Software development techniques, tools, and tech-
nologies are changing rapidly. The software development methods we will use in
the next millennium will differ significantly from current methods, and we have
no crystal ball to tell us what methods or approaches will be used 20 years (or even
10 years) from now. However, it is apparent that object-oriented development and
its core concepts are here to stay. Many schools have recognized this and made the
object-oriented systems development course an essential part of the computer
information systems or computer science programs. This book is intended for an
introductory course in object-oriented systems development at the junior, senior,
or first-year graduate level. The main goal of this book is to provide a clear de-
scription of the concepts underlying object-oriented systems development.

This book is not centered around any particular programming language or
CASE tools. Instead, it discusses fundamental concepts that are applicable to a
variety of systems. However, the approach used in this book is based on the best
practices that have proven successful in system development and more specifically
the work done by Booch, Rumbaugh, and Jacobson. Furthermore, the book uses
the Object Management Group’s unified modeling language (UML) for modeling,
describing, analyzing, and designing an application.

This book has a number of unique features:

* Use of the unified modeling language.

* A comprehensive treatment of the entire system life cycle using object-oriented
techniques (with the exception of implementation).

* Inclusion of the Popkin System Architect CASE tool (as a software packaging
option).
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* Coverage of introductory and essential topics as well as advanced subjects in
object-oriented systems development.

» Use of a use-case-driven approach.

* Use of a running case study for applying the lessons learned.

* Appendix providing a documentation template.

STRUCTURE OF THE BOOK

The book contains 14 chapters with a running case study for applying the concepts
learned. Each chapter concludes with a summary, a list of the key terms discussed
in the chapter, review questions, and problems that require students to apply their
knowledge based on the chapter material. The chapters are grouped into five parts.

Part One

The first part provides an overview of object-oriented systems development and
discusses why we should study it. In this part, we also look at object basics and
the systems development life cycle. Part One consists of Chapter 1, “Overview of
Object-Oriented Systems Development”; Chapter 2, “Object Basics”; and Chapter
3, “Object-Oriented Systems Development Life Cycle”

Part Two

The second part introduces various object-oriented methodologies, including the
unified approach, which will be used in this text, and an introduction to unified
modeling language (UML). This part consists of Chapter 4, “Object-Oriented
Methodologies,” and Chapter 5, “Unified Modeling Language.”

Part Three

The third part introduces object-oriented analysis, which is the process of extract-
ing the needs of a system and what the system must do to satisfy the users’ re-
quirements. The goal of object-oriented analysis first is to understand the domain
of the problem and the system’s responsibilities by understanding how the users
use or will use the system. Next, the classes that make up the system must be iden-
tified, as well as their behaviors, the relationships among them, and their structure.
This part consists of Chapter 6, “Object-Oriented Analysis Process: Identifying
Use Cases”; Chapter 7, “Object Analysis: Classification”; and Chapter 8, “Identi-
fying Object Relationships, Attributes, and Methods.”

Part Four

The fourth part covers object-oriented design. In this part, we will learn that the
classes identified during analysis provide us a framework for the design phase.
This part consists of Chapter 9, “The Object-Oriented Design Process and Design
Axioms”; Chapter 10, “Designing Classes”: Chapter 11, “Access Layer: Object
Storage and Object Interoperability”; and Chapter 12, “View Layer: Designing In-
terface Objects.”



Part Five

In this part, different dimensions of software quality and testing are d.iscussed.
Testing may be conducted for different reasons. Quality assurance testing looks
for potential problems in a proposed design. Usability testing, on the other hand,
tests how well the interface fits user needs and expectations. To ensure user satis-
Jaction, we must measure user satisfaction along the way as the design takes form.
Part Five consists of Chapter 13, “Software Quality Assurance,” and Chapter 14,
“System Usability and Measuring User Satisfaction.”

Appendices

The book includes two appendices. Appendix A provides a template for docu-
menting a system requirement. The template can be to create an effective system
document. Finally, Appendix B provides an overview of Windows and graphical
user interface (GUI) basics.

INSTRUCTIONAL SUPPORT MATERIAL

The text is accompanied by an Instructor’s CD-ROM. The CD-ROM contains files
for an Instructor’s Manual consisting of a lecture outline, teaching suggestions,
comprehensive Power Point classroom presentation files, the user satisfaction test
spreadsheet (see Chapter 14), answers to selected problems and questions, and test
bank and computerized testing software with multiple-choice and short-answer
questions.

SOFTWARE PACKAGING OPTIONS

Popkin’s System Architect CASE tool is available as a packaging option with this
text.
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INTRODUCTION

The objective of Part I is to provide an overview of object-oriented systems
development and why we should study it. In this part, we also look at ob-

ject basics and the systems development life cycle. Part I consists of Chap-
ters 1, 2, and 3.



