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PREFACE

The advent of the digital computer has resulted in an extensive reorienta-
tion of structural theory from hand calculations to computer methods.
Matrix formulations and programming techniques now play vital roles in
the analysis of structures, and these innovations are rapidly altering the
character of structural engineering. The availability of large, fast computers
has stimulated many new theoretical developments, while the analysis of
complex structures is becoming commonplace. With the appropriate pro-
grams, highly refined analytical models of structures subjected to various
service conditions can be analyzed quickly, easily, and with a minimum of
€ITOTS.

COMPUTER PROGRAMS FOR STRUCTURAL ANALYSIS contains
flow charts of general-purpose programs for the analysis of framed struc-
tures. The programs are documented in a manner which is independent of a
particular machine or computer language. They are arranged in a sequence
of increasing difficulty commensurate with the size and complexity of the
structures to be analyzed. The challenge inherent in the analysis of large
structures is to conserve computer storage and run time. Factors which aid
this objective are emphasized in the latter part of the book.

The stiffness method of analysis is used throughout, and the notation
used in the theory is the same as that in the programs. This approach is
admirably suited for programming because no engineering decisions are
required to define the unknowns in the analysis. In addition, the method
involves unit operations which are both systematic and localized in their
effects. Stiffness matrices of framed structures are usually well conditioned,
and roundeff error is rarely a problem.

In order to use this book effectively, the reader should have a mature
background in the theory of structures. Matrix algebra is a prerequisite,
and a prior introduction to-computer programming is also desired. A pre-
vious book* dealt primarily with the fundamental theories of matrix analysis
of structures, whereas the present book emphasizes the more advanced and
detailed aspects of programming.

Chapter 1 summarizes the theory of the stiffngss method in a form con-
ducive to computer programming. A brief discussion of algorithmic lan-
guages and flow charts is given in Chapter 2, and a series of useful procedures
for solution and inversion are developed and explained. The first general-
purpose program for structural analysis appears in Chapter 3. It is capable
of analyzing all types of framed structures for any number of loading
conditions, using the method of matrix inversion. Chapter 4 contains a

*Analysis of Framed Structures, by J. M. Gere and W. Weaver, Jr., D. Van Nostrand
Company, Inc., Princeton, N. J., 1965.
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viil PREFACE

second program, which takes‘advantage of the symmetry and band width of
the stiffness matrix and obtains results by solving equilibrium equations
simultaneously. The third program (Chapter 5) is oriented toward the
analysis of structures of arbitrarily large size, which have been divided into
substructures. Chapter 6 covers a number of supplementary programming
topics that represent feasible extensions or alternatives to the basic pro-
grams. Example problems and their computer solutions are included at the
ends of Chapters 3, 4, and 5. Finally, selected references for further study
are listed at the end of the book. =

The author is grateful to those individuals who contributed their pro-
gramming talents to this project. Dr. Winfred O. Carter, Mr. Eduardo
Calcafo, Capt. Joe Cannon (U. 8. Army), and Mr. Robert G. Oakberg have
all assisted in writing and checking the programs. Thanks are also due to
Mrs. Sherry Collins and Mrs. Madelyn Hunt for typing the manuseript.
Funds for the necessary computer time were provided by the School of
Engineering, Stanford University.

WitLiaM WEAVER, JR.
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Chapter 1
STIFFNESS METHOD OF ANALYSIS

1.1 Introduction. This chapter constitutes a summary of the stiff-
ness method as applied to the analysis of framed structures. The method is
presented in a form which may be readily programmed on a digital comput-
er, and the general-purpose program in Chapter 3 follows this form.

The matrix equations of the stiffness method are general in nature, but
the details of the analysis vary with the type of structure. Therefore, the
basic types of framed structures to be considered are described in the next
article. Equations of equilibrium for the stiffness method are formulated in
Art. 1.3, and the joint stiffness matrix is defined and discussed. An outline
of the steps in the analysis of a structure follows in Art. 1.4; this outline is
the same as that for the computer program in Chapter 3.

Since member stiffnesses play an essential part in the analyses of all
types of framed structures, this topic is treated in Art. 1.5. Next, matrices
for rotation of axes are developed in Art. 1.6, primarily for the purpose of
transforming member stiffness matrices from member axes to structure
axes. The latter form of the member stiffness matrices is then utilized in
generating the joint stiffness matrix, as shown in Art. 1.7. Loads applied to
the structure are covered in Art. 1.8, and the calculation of results follows
in Art. 1.9. Finally, the subject of joint displacement indexes is discussed in
Art. 1.10 with the objective of segregating degrees of freedom from support
restraints. The concepts described in this chapter are demonstrated by a
simple numerical example, which is solved in steps paralleling the presenta-
tion of the theory.

1.2 Types of Framed Structures. All of the structures that are
discussed in this book are called framed structures. They consist of members
that are long in comparison with their cross-sectional dimensions. The joints
(or nodes) of a framed structure are defined to be the points of intersection
of the members, as well as points of support and free ends of members. It is
assumed that the material of the members follows Hooke’s law, that the
displacements of the structure are small in comparison with its over-all
dimensions, and that axial-flexural interactions are negligible. A structure
which satisfies these requirements is said to be linearly elastic, and the
principle of superposition can be used. The presentation in Chapters 1
through 5 is limited to structures having flexible prismatic members and
inflexible connections and supports. Extensions to the theory are considered
later in Chapter 6. )



2 COMPUTER PROGRAMS FOR STRUCTURAL ANALYSIS

Every structure in this book is analyzed with respect to a set of orthog-
onal coordinate axes. Actions (forces and couples) and displacements (trans-
lations and rotations) are treated in component form. These components
are taken to be positive when their senses correspond to the positive senses
of the coordinate axes. Loads applied to framed structures may be concen-
trated forces, distributed forces, or couples.

It is convenient to divide framed structures into the following six cate-
gories: (1) continuous beams, (2) plane trusses, (3) plane frames, (4) grids,
(5) space trusses, and (6) space frames. These categories are selected be-
cause each represents a class of structures having special characteristics.
While the basic principles of the stiffness method are the same for all types
of structures, the analyses for these six categories are sufficiently different
in their details to warrant separate discussions. A general description of each
type of structure follows.

Figure 1-1a shows a continuous beam of indefinite extent, consisting of
prismatic segments rigidly connected to each other, and supported at
various points along its length. A typical member i is identified in the figure
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F1a. 1-1. Continucus heam

as the element framing between two joints labeled j and k. In this interval
there is neither a support nor a change in cross section. Supports may be
fized (as at the left end) or pinned, or there may be roller supports (as at
intermediate points). Concentrated and distributed applied forces are in-
dicated in the figure by single-headed arrows. These forces lie in the z-y
plane, which is assumed to contain an axis of symmetry of the cross section
of the beam. Applied couples, indicated by double-headed arrows, have
their moment vectors normal to the z-y plane (in the z sense). Under these -
conditions the beam deflects in the same plane (the plane of bending) and
does not twist. Internal stress resultants may exist at any cross section of
the beam and, in the general case, may include an azial force, a shearing
force, and a bending couple.

In a continuous beam the displacements are due primarily to flexural
deformations, and only such deformations will be considered in this chapter.
The effects of shearing deformations can be included in an analysis, if neces-
sary, as an extension to the theory. In either case, however, the omission of
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azial deformations means that a maximum of two possible displacements
may occur at any joint. They consist of a translation in the y direction and
a rotation in the 2 sense. Figure 1-1b shows these two types of displacements
for a typical joint j. The single-headed vector labeled 1 represents the y
translation, and the double-headed vector labeled 2 denotes the z rotation.
This manner of depicting and numbering joint displacements will be utilized
for all types of framed structures.

A portion of a plane truss appears in Fig. 1-2a. This type of structure is
idealized as a system of members (such as member 7) lying in the z-y plane
and interconnected at hinged joints (such as joints j and k). Restraints on

i \)

(b)

Fia. 1-2. Plane truss

the truss may be either pinned or roller supports. All applied forces are
assumed to act in the plane of the structure, and applied couples have their
moment vectors normal to the plane, as in the case of a beam. The loads
may consist of concentrated forces applied at the joints, as well as loads
that act on the members themselves. If couples are applied at the joints,
they must be considered to act directly upon one or more of the members
framing into that joint because of the hinge idealization. For purposes of
analysis, loads applied to the members may be replaced by statically equiv-
alent loads acting at the joints. Then the analysis of a truss subjected only
to joint loads will result in axial forces of tension or compression in the mem-
bers. In addition to these axial forces, there will be bending moments and
shear forces in those members having loads that act directly upon them. The
determination of all such stress resultants constitutes the complete analysis
of the internal actions in the members of a truss. Joint translations result
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from axial strains in members, and these translations may be expressed
conveniently by their components in the z and y directions. The two com-
ponents of the translation of a typical joint 7 are represented by vectors
1 and 2 in Fig. 1-2b.

A plane frame consists of members lying in a single plane and having
axes of symmetry in that plane. Figure 1-3a illustrates a part of such a

i
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Fig. 1-3. Plane frame

structure located in the x-y plane, which is assumed to be a principal plane
of bending for all of the members. A typical member 7 is assumed to be
rigidly connected to other members at joints such as j and k. Support’
restraints may be fixed, pinned, or rollers. The character of the loads
carried by a plane frame is the same as that for a plane truss, but couples
may be considered to be applied directly to rigid joints in a frame. Asina
beam, the internal stress resultants at any cross section of a plane frame
member may include an axial force, a shearing force, and a bending couple.
Flexural, axial, and shearing strains usually contribute to joint displace-
ments in that order of importance, but only the first two types will be con-
sidered for the present. The three possible types of displacements at a
typical joint j are indicated in Fig. 1-3b. Vectors 1 and 2 denote z and y
components of the translation in the plane of the structure, and vector 3
represents the rotation in the z sense.

A grid is a plane structure composed of contmuous members that either
cross or intersect one another. In the former case the connections between
members are often assumed to be hinged, whereas in the latter case the con-
nections are assumed to be rigid. In a general analysis a grid is presumed to
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have rigid joints, but a grid with hinged joints may be evolved from this
approach as a special case.

The coordinate axes for a grid will be taken as shown in Fig. 1-4a. The
structure lies in the z-y plane, and all applied forces act parallel to the z axis.
Loads in the form of couples have their moment vectors in the z-y plane.

/}'

’L/

The figure shows a typical member 7 framing into joints j and k. Such a
member may experience torsion as well as shear and bending due to the
nature of the loads. Each member is assumed to have two axes of symmetry
in the cross section: one of them lying in the z-y plane and the other parallel
to the z axis. This arrangement of axes guarantees-that bending and torsion
in the member occur independently of one another and that the member
deflects in the z direction only. The significant displacements of a typical
joint j are rotations in the x and y senses and a translation in the z direction,
as indicated in Fig. 1-4b by vectors 1, 2, and 3, respectively.

A grid structure resembles a plane frame in several respects. All of the
members and joints lie in the same plane, and the members are assumed to
be rigidly connected at the joints. Flexural effects tend to predominate in
the analysis of both types of structures, with the effects of torsion being
secondary in the grid analysis and axial effects being secondary in the plane
frame analysis. The most important difference between a plane frame and a
grid is that the former is assumed to be loaded in its own plane, whereas
the loads on the latter are normal to its plane. Both structures could be
called plane frames, and the difference between them denoted by stating
the nature of the loading system. Furthermore, if the applied loads were to
have general orientations in space, the analysis of the structure could be
divided into two parts. In the first part the frame would be analyzed for the
components of loads in the plane of the structure, while the second part
would consist of analyzing for the components of loads normal to the plane.
Superposition of these two analyses would then produce the total solution

(a)

Fra. 1-4. Grid
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of the problem. Such a structure might be considered as a special case of a
space frame in which all of the members and joints lie in a common plane.

A space truss is similar to a plane truss, except that the members may
have any directions in space. Figure 1-5a shows a portion of a space truss
structure in conjunction with a set of structure axes z, y, and 2. A typical

I
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(a) (b)
Fia. 1-5. Space truss

member 7, framing into joints j and k, is indicated in the figure. All joints
in a space truss are assumed to be universal hinges, and supports may be
either hinges or rollers. The forces acting on such a structure may be in
arbitrary directions, but any couple applied to a member must have its
moment vector perpendicular to the axis of the member. The reason for this
requirement is that a truss member is presumed to be incapable of trans-
mitting a twisting moment. Internal member actions consist primarily of
axial forces, but bending couples and shear forces will also exist in a member
which has loads applied along its length. Because of the hinged joint ideal-
ization, rotations of the ends of the members are considered to be immaterial
to the analysis. The significant joint displacements are translations due to
axial strains in the members. These translations may be represented by
their components in the z, y, and z directions. Figure 1-5b depicts these
component translations by the vectors labeled 1, 2, and-3, respectively.
The final and most general type of structure is a space frame. For this
type there are no restrictions on the locations of joints, orientations of mem-
bers, or directions of loads. However, the cross section of each member is
assumed to have two axes of symmetry, which delineate the principal
planes of bending. Figure 1-6a illustrates the general character of a space
frame and a typical member ¢ within the frame. Joints such as J and k are
assumed to be rigid, but restraints may be fixed, hinged, or roller supports.
The individual members of a space frame may carry internal axial forces,
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(a) (b)
Fie. 1-6. Space frame

torsional couples, and shearing forces and bending couples in both principal
directions of the cross section. Flexural, axial, and torsional strains may all
be significant, and €éach joint that is not restrained is assumed to translate
and rotate in a completely general manner in space. Thus, all possible types
of joint displacements must be considered, and they are taken to be the
three components of the translation and the three components of the rota-
tiph parallel to the x, y, and 2 axes. These six types of displacements appear
in Fig. 1-6b as the three translation vectors (1, 2, and 3) and the three
- rotation vectors (4, 5, and 6) at the typical joint j.

An arbitrary numbering system for the joints and members in a framed
structure will be adopted. The joints will be numbered 1 through n;, where
n; is the total number of joints. The sequence in which the joints are num-
bered is immaterial, but each joint must have a number. Similarly, the
members are numbered 1 through m, where m is the total number of mem-
bers. Every member must have a member number 4, and it will also be
necessary to record the numbers j and k of the joints into which it frames.
The members and joints of a continuous beam will always be numbered
from left to right because of its simple geometry. However, the elements of
plane and space structures may be numbered in any desired sequence, and
a systematic pattern will ordinarily be adopted.

The numbering system for joint displacements follows that for numbering
the joints of a structure. That is, the possible displacements at joint 1 will
be numbered first, those at joint 2 numbered second, and so on. This method
of identifying possible joint displacements is demonstrated for a simple
plane truss structure in Fig. 1-7b. The figure shows member numbers in
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circles adjacent to the members, and joint numbers are indicated by num-
bezs adjacent to the joints. The numbering system for joint displacements is
represented by numbers adjacent to the arrows, which denote the positive
directions of the two possible displacements at each joint. The plane truss
problem shown in Fig. 1-7a will be used as an illustrative example through-
out this chapter.
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Fia. 1-7. Example (plane truss)

1.3 Equilibrium Equations — Stiffness Matrix. In the stiffness
method of analysis the displacements of the joints of a structure are con-
sidered to be the basic unknowns. Equations of joint equilibrium may be
expressed in terms of these displacements by the following matrix equation,
the parts of which are explained below:

A; = AjL + SiD; (1-1)
This formulation includes all of the joints of the structure, whether they

are free to displace or are restrained by supports. Those components of joint
displacements that are free to cccur are called degrees of freedom, and the
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number of degrees of freedom represents the number of unknowns in the
anslysis. Equation (1-1) can be arranged and partitioned in an expanded
form by separating the nodal degrees of freedom from the support re-
straints, as follows:

[in] _ I::DL] + [S SDR][D ] 12)
R RL Sap SrriL Dz

Thus, the symbol D; represents a column vector of displacements which
is divided into the unknown displacements D at degrees of freedom and
known displacements D at support restraints. Elements of Dg are ordinarily
zero, but they may be nonzero if support displacements are specified in a
problem. Similarly, the column vector Ay consists of corresponding external
actions Ap applied at free nodes, as well as support reactions Ar which
arise at restrained nodes. The upper part of the vector AsL contains actions
Apy at free joints due to loads applied directly to members which frame
into those joints. The lower portion of A;L is composed of actions AgrL at
restrained nodes due to either loads applied directly at support restraints
or loads applied to members framing into such supports. A method for
treating member loads as equivalent joint loads is described in Art. 1.8.

The matrix Sy in Eq. (1-1) is a square, symmetric array of stiffness in~
fluence coefficients for actions of type A; due to unit displacements of type
D;. This matrix is called the over-all joint stiffness matriz (or simply joint
stiffness matriz) because it involves all of the joints of the structure, whether
they are free to displace or not. For purposes of understanding the nature of
this matrix it is convenient to imagine the structure to be temporarily
restrained at all joints. This conceptual aid is called the restrained structure,
and a simple example of a completely restrained plane truss is shown in Fig.
1-7b. The elements of S; for this example can be determined by inducing
unit values of each nodal displacement, one at a time, and calculating the
resulting restraint actions. This approach is not computationally efficient,
but it serves to demonstrate the character of the stiffness coefficients. Figure
1-8 illustrates the effects of inducing unit amounts of the eight possible
joint displacements in the restrained structure. The restraint actions in-
dicated in the figure become elements of the joint stiffness matrix given in
the following equation:

S Snz Srs O
Srn Sy 0 0
Sm O Sss Ssu

0 0 Srr Sns |
0 Sr Sim Sis
S

Sy =] e (a)
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