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Although we are mainly using catalysts because of the higher
selectivity of catalytic processes in comparison with the noncata-
lytic ones, the subject of selectivity has had relatively little
attention in the literature. Books on catalysis can be found in
which the term selectivity does not even appear in the index. It
is quite generally believed that selectivity will finally be ex-
plained as "a different activity in different reactions by diff-
erent catalysts,"” more or less automatically when data on activity
of various catalysts are available and well understood. However,

as experience teaches (we shall see below) the opposite is true:

Copyright © 1979 by Academic FPress, Inc.
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V. PONEC

the activity of catalysts even in apparently simple reactions is
determined by the selectivity properties of the catalysts. There-
fore, it seems appropriate to concentrate attention directly on
selectivity problems.

i We shall proceed in the following way. First, we shall summ-
arize the leading ideas in the theory of the catalytic activity
in Section I, in order to see which factors might be responsible
for the selectivity of catalysts. This will be briefly discussed
at the end of Section II. Second, we shall review the attempts
at a formal description of the selectivity of catalysts with the
same purpose as above. Since much of what we know about factors
determining the selectivity of metals has been found in studies
on alloys, some information on the electronic structure of metals
and alloys will be presented as well as some remarks on the sur-
face composition of alloys in Section III. Finally, several ex-
amples of reactions will be discussed where the factors determin-
ing the selectivity are already identified, at least to some

extent.

I. CATALYTIC ACTIVITY OF METALS; CORRELATIONS AND PREDICTIONS

We can discern two streams of thoughts in the theory of cata~
lytic activity of metals: (a) Dowden's (1948, 1950, 1952) theory,
or (b) the semiempirical rules related to the so-called Sabatier
principle (Sabatier, 1911; Tanaka and Tamaru, 1966; Schuit et al.,
1961; Makishima et al,., 1961; Golodetz and Roiter, 1963).

Dowden's theory was formulated around 1950 and consisted of the
following ideas:

(1) Reacting molecules are activated by a charge transfer on

the catalyst surface in the state of adsorption. Schematically,

A + B = C
(1)
ette etve etle
metal
<« e >
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A good catalyst mediates this transfer fast.

(2) A fast activation of the reaction components is possible
if the metal possesses a certain number of d-holes (unoccupied
energy levels of high d-character) and a high value of the densi-
ty of state N(EF) at the Fermi level EF as well as a high gradient
of N(E) at EF'

It soon appeared that it was extremely difficult to find a re-
lation between any single parameter characterizing the electronic
structure (number of d-holes, electric conductivity, work function,
d-character according to Pauling, etc; see Hayward and Trapnell,
1964; Trapnell, 1957; Ponec, 1974; Ponec et al., 1974) and the
chemisorption and catalytic properties. On the other hand, it
also became clear that the interaction of the reacting components
with the surface of the catalyst is much more complicated than a
simple electron transfer from and to an intact molecule (Fahren-
fort et al., 1960). Since the interaction of the reacting compo-
nents with the surface reminds us of formation of "normal" chemi-
cal compounds, in around 1960 the old ideas of Sabatier became
popular again.

According to Sabatier (1911) the essence of catalysis is the
formation of intermediate compounds between the catalysts and re-
acting components (Sabatier formulated his idea first for alcoho-
lates) and these intermediates must be neither too stable nor un-
stable, i.e., an optimum stability is needed (Sabatier principle)
for an optimum catalytic effect. Schematically, the reactions
proceed like

IR 2
K K K
In most cases the stability is probably related to the chemisorp-
tion bond strength (dissociative energy of A-K, etc.). These data
are usually not known in advance, and therefore Tanaka and Tamaru
(1963, 1966) suggested correlating the catalytic data with the heat
of formation of the highest oxide per metal atom AHfO. Parameter

AHfO in its turn is related to the chemisorption bond strength.




V. PONEC

The Sabatier principle and correlation as just mentioned
helped to systemize and classify quite successfully the catalytic
activity of various metals in the recent past. An example is
given in Fig. 1.

It is, of course, another question why such correlation exists.
Let me mention here that in 1940 Beeck (1945, 1948, 1950; Beeck
et al., 1940) said that the right part of correlation, i.e., the
antipathetic relation "high heat-low activity," is due to side
reactions leading to deactivation of the catalysts. In fact, in

this way we have to deal with a "heat-selectivity" correlation.

II. FORMAL DESCRIPTION OF THE SELECTIVE BEHAVICR

Wheeler (1951) suggested discriminating between three basic

types of selectivities: (1) S the selectivity in two (or more)

I'
parallel reactions of two (or more) starting compounds; (2) SII'
the selectivity in two (or more) parallel reactions of the same

starting compound; (3) S the selectivity in two simultaneous,

I1I’
consecutive reactions. Reaction examples can be (1) the competi-
tive hydrogenation in a mixture of various unsaturates or aro-
matics, (2) the oxidation of olefines, reforming reactions of hy-
drocarbons, etc., and (3) the hydrogenation of acetylene, dienes,
etc.

Only the simplest, not very realistic schemes for these react-
ions can be treated quantitatively. In order to characterize the
selectivity we introduce first the differential selectivity S,

eventually normalized to unity. S is given by differential quo-
dp
tients of the product pressure, €.J., SI = E§£ or sI {normalized)
y
= SI/(SI 4+ 1). In a general case, this is a very complicated
function of pressure and temperature and we shall confine our
consideraticns to the first-order (monomolecular, or pseudomono-

molecular, in a large surplus of one of the components) irrevers-
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V. PONEC

ible reactions (i.e., far from equilibria). It should be noted
that we can speak of a selectivity-determining step as with regard
to the overall reaction we often speak of a rate-determining step.

Those two steps need not always be identical.

A. Selectivity of the First Type, SI
The reaction concerned is most simply

A->P (3)

B~>P (4)

or in a more complicated case,

+ A 4+ wan coe ] [] up o cee ]
A vA A vA A" + Pl + ul Pl + ul Pl + (3%)

1R? np" . = ] ] [ " .o []
B + VB B' + VB B" + eee P2 + u2 P2 + u, P2 + . (4')

If the rate of adsorption is rate and selectivity determining
in (3) and (4), then the selectivity is approximately given by
the ratio of adsorption rate constants, because in the case of a
slow adsorption the surface coverage is low:
k p p. k O E - E
4
s A,ads’A _ _A A,ads exp B,ads A,ads (5)

T
1 kB,adspB kaB?ads R

If the surface reaction determines the rate and selectivity, then

. - kA-f(eA)

- 6
17 kg, f(6y) (e)
or simply

s = ka%
= 6t
I kBeB (6")

for first order (with regard to 0) reactions. Langmuir-type

equilibrium adsorption will lead to an expression
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-d
S =_(._ﬁ\i=dppl—kAKApA (7)
. — L
(-dpy)  dpp, kg Ky py

where Ki stands for the adsorption coefficient and k. for the re-
i

action rate constant.

Integration of (5) or (7) leads to a linear relation between

the logarithms of pressures:
log p, ~ log py (8)

The slope of this linear relationship depends either on the ratio
of the adsorption rate constants or on the product of the ratio
of adsorption equilibrium constants and reaction rate constants.

At low temperatures the desorption rate of compounds A and B
might be much lower than the rate of their surface reaction. Then
the steady-state value of OA and OB is maintained by the respective
rates of adsorption and reaction and the selectivity maily depends
on the ratio of the adsorption rate constants.

Arriving at this point of discussion, we should realize for the
first time in this chapter which factors in general might influ-
ence the selectivity of metals and alloys. Later we shall see that
these factors will be repeatedly found to be responsible for the
selectivity.

When an equation like Eg. (5) is valid, it is the difference in
activation energy of adsorption that is important and the number
of sites included in kA on the surface that are available for a
certain mode of adsorption, necessary for the catalytic reaction.
With regard to the latter, if, for example, reaction (3) needs no
more than, say, one active site to occur and reaction (4) needs a
whole ensemble of several sites, then a dilution of the active
component of the alloy catalyst in a virtually inactive matrix
must lead to a considerable increase in selectivity

1 de : . . . . .

When an equation like Eq. (7) is valid, it is the difference in

adsorption heats and activation energies that is important and,

again, the number of sites forming an ensemble required by the
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reaction, It is in some way surprising that the first factor, the
energetic one, has been discussed in the literature many times,
while the second, the influence on the selectivity of the ensem~
ble size or ensemble geometry, has had much less attention, This
is certainly not justified and we shall see that in almost all

cases discussed below, this second "geometrical" factor will play
gome role,

B, Selectivity in Parallel Reactions, SII

The simplest model scheme is

2
S

If the reaction is that simple in its microscopic mechanism, then

(products) (8)

the surface reaction must be responsible for the selectivity
patterns, in any case. The selectivity is SI = kB-f(OA)/kc-g(eA).
In the simplest case of the first-order reaction,

£6,) = g(9,) = 0, and

S =

11 )

Ow I ww

An example of a normalized SII selectivity as a function of temp-
erature is shown in Fig. 2, for three parallel reactions.

However, in a more general case, the starting compound A is
adsorbed on a given surface in various intermediate forms (Il, 12),

each reacting further toward different products (B, C):

a(gas) (schematically) (10)




