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Preface

This text is intended for use in a first course in discrate mathematics in
an undergraduate computer science curriculurn. The level is appropriate
for a sophomore or junior course, and the number of topics and the depth
of analysis can be adjustad to fit a one-term or a two-term course. This
course could be taken concurrently with the student’s first course in
programming. It i8 expected that a course from this text would be
- preliminary to the study of the design and analysis of algorithms and
data structures.

No specific mathematical background is prerequisite outside of the
material ordinarily covered in most college algebra courses. In particular,
a calculus background is not assumed. Moreover, the bock is designed to
be used by students with little or no programming experience although
this would be desirable.

Our assumption about background has dictated how we have written
the text in certzin places. For instanee, in Chapter 3, we have avoided
reference to the convergence of power series by presenting the geometric
series

ia‘?ﬁ‘
i=0

as the multiplicative inverse of 1 - aX; in other words, we
consildered power series {rom a sirictiy algebreic ratiier than the anslyti-
cx viewpeint. Likewise, in Chapter 4, we avoid reference to imits when
we discuss the asymptotie behavior of functions snd the “uvig § noia-
tion”.
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Preface

The Association for Computing Machinery, CUPM, and others have
recommended that a computer science curriculum include a discrete
mathematics course that introduces the student to logical and algebraic
structures and to combinatorial mathematics including enumeration
methods and graph theory. This text is an attempt to satisfy that
recommendation.

Furthermore, we expect that some of the teachers of this course will be
mathematicians who are not computer scientists by profession or by
training. Therefore, we have purposely suppressed writing many algo-
rithms in computer programming language though on occasions it would
have been easier to do so.

The mathematics taught to students of computer science has changed
dramatically in the last fifteen to twenty years. Moreover, as the field has
evolved its use of mathematics has become more sophisticated. In our
view computer scientists now must have substantial training in mathe-
matics if they are to understand their subjects well. In particular, a
professional computer scientist is more than just a programmer and is
called upon to design and to analyze algorithms. This requires consider-
able mathematical reasoning. For this reason we have included in
Chapter 1 considerable detail on symbolic representation of assertions,
how inferences are made, and how assertions are proved. We expect the
student to return to this material from time to time as a refresher course
on problem solving and methods of proof.

Much computer science is pragmatic in flavor, and therefore more like
engineering than mathematics, yet other parts (for example, algorithm
analysis and graph theory) are in fact, themselves mathematical topics.
The trend toward more and more reliance on mathematics is likely to
continue. Therefore, we make no apology for the mathematical flavor of
several sections of this book. Nevertheless, we have attempted to include
several motivational examples from computer science that we felt could
be discussed without making presumptions about the reader’s back-
ground in computer science. It is expected that subsequent courses in
computer science will provide further appllcatxons of the concepts
introduced in this book.

The text has evolved over a period of years and in that time we have
followed different sequences in covering the topics. Thus we have written
the text so that Chapter 3 can be taught at any time after Chapter 2 is
covered. In particular, in a curriculum that calls for an early introduction
to trees and graph theory we recommend that Chapter 3 be postponed
until after Chapter 5. (Only one casual reference to the solution of the
Fibonacci relation is made in Section 5.6.)

Exercises follow each section and as a general rule, the level of
difficuity ranges from the routine to the moderately difficult although
some proofs may present a challenge. In the early chapters we inciude



Preface ix

many worked out examples and solutions to the exercises hoping to
anable the student to check his work and gain confidence. Later in the
book we make greater demands on the student; in particular, we expect
the student to he able ti. make some proofs by the end of the text.

We wishi to express our appreciation to several people who l.elped with
the preparation of the manusenipt Sheila QO connell and Pam Flowers
read early versions and made several helpful suggestions while Sandy
Robbins, Denise Khosrow, Lvnne Pennock, Ruth Wright, Karen Serra.
and Marlene Walker typed portions of the manuseript.

Finally, we want to expiess our love and appreciation to our families
for their patience and encouragement throughout the time we were
writing this book.



A Note to the Reader

In cach chapter of this book, sections are numbered by chapter and
ther section, Thus, section nuntber 4.2 means that it is the se~ond section
of Chapter 4. Likewise theorems. corollaries, definitions, and examples
arc numbered by chapter, section, and sequence so that example 1.2.7
means that the example is the seventh example in section 4.2,

The end of every theorem proof is indicated by the symbol [J.

We acknowledge our intellectural debt to several authors. We have
included at the end of the book a bibliography which references many.
but not atl, of the books that have been a great help to us. A bracket, for
instance [25], means that we are referring to the article or book number
25 in the bibliography.

JOe 1‘. Mott
Abraham Kandel
Theodore P. Baker
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BASICS

Foundations

One of the important tools in modern mathematics is the theory of
sets. The notation, terminology, and concepts of set theory are helpful in
studying any branch of mathematics. Every branch of mathematics can
be considered as a study of sets of objects of one kind or another. For
example, algebra is concerned with sets of numbers and operations on
those sets whereas analysis deals mainly with sets of functions. The study
of sets and their use in the foundations of mathematics was begun in the
latter part of the nineteenth century by Georg Cantor (1845-1918). Since
then, set theory has unified many seemingly disconnected ideas. It has
heiped to reduce many mathematical concepts to their logical founda-
tions in an elegant and systematic way and helped to clarify the
relationship between mathematics and philosophy.

What do the following have in common?

« a crowd of people,

¢ a herd of animals,

« a bunch of flowers, and
« agroup of children.

In each case we are dealing with a collection of objects of a certain type.
Rather than use a different word for each type of collection, it is
convenient to denote them all by the one word “set.” Thus a set is a
collection of well-defined objects, called the elements of the set. The
elements (or members) of the set are said to belong to (or be contained
in) the set.

One can talk about the set of all “employees” in a corporation since an
“employee” is a well-defined term. As we shall see later one can also talk

1
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Chapter 1: Foundations

about the set of “tall employees” by utilizing the concept of a fuzzy
set.

It is important to realize that a set may itself be an element of some
other set. For example, a line is a set of points; the set of all lines in the
plane is a set of sets of points. In fact a set can be a set of sets of sets and
so on. The theory dealing with the (abstract) sets defined in the above
manner is called (abstract or conventional) set theory, in contrast
to fuzzy set theory which will be introduced later.

This chapter begins with a review of set theory which includes the
introduction of several important classes of sets and their properties.

In this chapter we also introduce the basic concepts of relations,
functions, and lattices necessary for understanding the remainder of the
material. The chapter also describes different methods of proof—
including mathematical induction—and shows how to use these tech-
niques in proving results related to the content of the text. The last
section in the chapter is devoted to fuzzy sets. This section represents an
area of extensive application in computer science, especially in linguistic
cybernetics, approximate reasoning, and decision making in uncertain
environments. )

The material in Chapters 2-6 represents the applications of the
concepts introduced in this chapter. Understanding these concepts and
their potential applications would be sufficient mathematical prepara-
tion in these areas for most computer science students.

1.2 SETS AND OPERATIONS OF SETS

 Sets will be denoted by capital letters A,B,C, . . ., X,Y,Z. Elements will
be denoted by lower case letters a,b.c,. . .,x,y,2. The phrase “is an element
of” will be denoted by the symbol &. Thus we write x & A for “x is an
element of A.” In analogous situations, we write x & A for “x is not an
element of A.”

There are five ways used to describe a set.

1. Describe a set by describing the properties of the members of the
set.

2. Describe a set by listing its elements.
. 3. Describe a set A by its characteristic function, defined as

us(x) = 1if x & A,
palx) =0ifx & A,

for all x in U, where U is the universal set, sometimes called the “universe
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of discourse,” or just the “universe,” which is a fixed specified set
describing the context for the duration.

If the discussion refers to dogs only, for example, then the universe of
discourse is the class of dogs. In elementary algebra or number theory,
the universe of discourse could be numbers (rational, real, complex, ete.).
The universe of discourse, if any, must be explicitly stated, because the
truth value of a statement depends upon it, as we shall.see later.

4. Describe a set by a recursive formula. This is to give one element of
the set and a rule by which the rest of the elements of the set may be
found.

5. Describe a set by an operation (such as union, intersection, comple-
ment, etc.) on some sets. :

Example 1.2.1. Describe the set containing all the nonnegative
integers less than or equal to 5.

Let A denote the set. Set A can be described in the following ways:

1. A = {x|x is a nonnegative integer less than or equal to 5.
2. A=1{0,1,2,3,4,5}.
1forx =0,1,...,5

3. -
alx) 0 otherwise.

4. A={x,,,=x;,+ 1,i = 0,1,... 4, where x, = 0}.
5. This part is lett to the reader as an exercise to be completed once the
operations on sets are discussed.

The use of braces and [ (“such that”) is a conventional notation which
reads: {x | property of x} means “the set of all elements x such that x has
the given property.” Note that, for a given set, not all the five ways of
describing it are always possible. For example, the set of real numbers
between 0 and 1 cannot be described by either listing all its elements or
by a recursive formula.

In this section, we shall introduce the fundamental operations on sets
and the relations among these operations. We begin with the following
definitions.

Definition 1.2.1. Let A and B be two sets. A is said to be a subset
of B if every element of A is an element of B. A is said to be a proper
subset of B if A is a subset of B and there is at least one element of B
which is not in A.

If A is a subset of B, we say A is contained in B. Symbolically, we write
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A C B.If A is a proper subset of B, then we say A is strictly contained in
B, denoted by 4 C B. The containment of sets has the following
properties. Let A, B, and C be sets. '

1. ACA.
2. IfAC Band BC C,then AC C.
3. If A Band B C C,thenAd C C.
4. If AC Band A L C,then B { C, where {/ means “is not contained
in.”
The statement A C B does not rule out the possibility that B C A. In
fact, we have both A C Band B C A if and only if (abbreviated iff) A and
B have the same elements. Thus we define the following:

Definition 1.2.2. Two sets A and B are equal iff A C Band B C A.
We write A = B.

A set containing no elements is called the empty set or null set,
dennted by @. For example, given the universal set U of all positive
numbers, the set of all positive numbers x in U satisfying the equation
x +1 - 0is an empty set since there are no positive numbers which can
satisfy this equation. The empty set is a subset of every set. In other
words, @ C A for every A. This is because there are no elements in &;
therefore, every element in @ belongs to A. It is important to note that
the sets @ and {@} are very different sets. The former has no elements,
whereas the latter has the unique element @. A set containing a single
element is called a singleton.

We shall now describe three operations on sets; namely, complement,
union, and intersection. These operations allow us to construct new sets
from given sets. We shall also study the relationships among these
operations.

Definition 1.2.3. Let U be the universal set and let A be any set.
The absolute complement of A, A, is defined as {x|x & A} or,
{xix¢ Uandx & A}. If A and B are sets, the relative complement of
A with respect to B is as shown below.

B-A={x|xE Bandx & Al.

It is clear that @ = U, U = @, and that the complement of the
complement of A is equal to A. :

Definition 1.2.4. Let A and B be two sets. The union of A and B is
AU B ={x|x € Aorx © Bor both}. More generally, if A;,4,,. . .,A, are
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sets, then their union is the set of all objects which belong to at least one
of them, and is denoted by

AT A - ALorby (LA,
. Jo1

Definition 1.2.5. The intersection of two sets A and B is
A VB ={x|x € Aandx ¢ Bl The intersection of n sete A,,4,,. .., A, i
the set of all objects which belong to every one cf them, and is denoted
by

Ay VA (i - (YA, or (A,

1

Some basic properties of union and intersection of two sets are as
follows:

Union Iniersection
ldempoient: AJA-A AlMA-A
Commutative: AU B=B1iJA AR -8 A
(B CH- AT BYY C

Associative: ALBUCO=(AUBUC AT

It should be noted that, in general,
(AUBNC+AU(BQO).

Definftion 1.2.6. The svmmetrical difference of two sets 4 and
Bis A A B -={x,x © A, or x € B, but not bothl. The symmetrical
difference of two sets is also called the Boolean sum of the two sets.

Definition 1.2.7. Two sets A and B are said to be disjoint if they
do not have a-member in common, that is to say,if A ™ B~ @.

We can easily show the following theorems from the definitions of
union, intersection, and complement.

Theorem 1.2,1. (Distributive Laws). Let A, B, and C be three sets.
Then,

CN(AUB)=(CMNA)U(CNB),
CUANB)=(CUA) (" B).
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Theorem 1.2.2. (DeMorgan’s Laws). Let A and B be two sets. Then,

It is often helpful to use a diagram, called a Venn diagram [after John
Venn (1834-1883})}, to visualize the various properties of the set opera-
tions. The universal set is represented by a large rectangular ares.
Subsets within this universe are represented by circular areas. A sum-
mary of set operations and their Venn d'agrams is given in Figure 1-1.

DeMorgan’s laws can be established trom the Venn diagram. If the
area outside A represents A and the area outside B represents B, the
proof is immediate.

Let UV pe our universe; applying DeMorgan’s laws, A U B can be
expressed as a union of disjoint sets:

AUB-(ANEB)=U- ANB - (A YU (AN B)U@ANB).

Set Operation Symbol Venn Diagram
Set 818 contained
in set 4 BC A A

I'he absolute complement I
of set A '

The relative complement

(<

of set B with respect A—- B [ ﬁ
o set A v,
The union of sets 0 /I/
Aand B AL B L 4@%

[ 1
The intersection of 4
sets 4 and B AN B é l

N

The symmetrical [
difference of AAB g’%
sets A and B D \\\

Figure 1-1. Venn diagram of set operations.
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Example 1.2.2,

A—(A-B)=A- (AN B) (by definition of 4 — B)?

~AN(ANB) (by definition of A — B),
=AM (AU B) (by DeMorgan).
=(ANA)U (AN B) (bydistributive law),

-2 UUNB) (by AN A = &),
~-ANB (by 2 U X = X).

Clearly, the elements of a set may themselves be sets. A special class of
such sets is the power set.

Definition 1.2.8. Let A be a given set. The power set of 4,
denoted by P(A), is a family of sets such that if X C A, then X € P(A),
Symbolically, P(4) = {X | X C Al.

Example 1.2.3. Let A - {a,b,c}. The power set of A is as foliows:

P(A) = {2 L{al,ibl{chla,blib,clc.alla,bel ).

 Exercises for Section 1.2

1. List theelements in the following sets.
(a) The set of prime numbers less than or equal to 31.
() {x{x € Rand x® + x — 12 = 0}, where R represents the set of
real numbers.
(¢c) Theset of lettersintheword SUBSETS.

2. Russell’s paradox: Show that set K, such that K = {S|S is a set
such that S & S}, does not exist.

3. Prove that the empty set is unique.

4. Cantor’s paradox: Show that set A4, such that A = {S]S is a set),
does not exist.

5. Let U= 11,2,3,4,5}, 4 = {1,5], B = {1,2,3,4},and C = {2,5}. Determine
the following sets.
(a) AN B.

(b) AU (BN C).

) (AUBNALO.
d) (AN B)UBULOL.
(e) AU B.
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6.

1.

Let A, B, and C be subsets of U. Prove or disprove:
(AUBYN(BUC)CANB.
Use DeMorgan’s laws to prove that the complement of
ANBNAUBNEAUO
is

ANBU@ANBUDL).

8. A, are sets of real numbers defined as

10.

11.

12.

13.
14.
15.
16.

A, =la|la<1}

Ay =lala<1 + 1/kRLE=1,2,....

Prove that

(M) Ax = A,
k=1

. List the elements of the set {a/b: a and b are prime integers with

l<a=<12and3 < b <9}

Let A be a set. Define P(A) as the set of all subsets of A. This is
called the power set of A. List 2(A), where A = {1,2,3}. If P(A)
has 256 elements, how many elements are there in A?

If set A has k elements, formulate a conjecture about the number
of elements in P(A).

The Cartesian product of the sets Sand T, (S x T), is the set of
all ordered pairs (s,t) wheres © Sand t & T, with (s,t) = (u,v) for
u& S, VET,iff s ~uandt = v. Prove that S x T'is not equal to

T xSunlessS = ToreitherSor T1s @.

Prove that B — A is a subset of A.
Provethat B — 4 = BN A.
Prove that A C Bimplies A U (B — A) = B.

If A =1{0,1} and B = {1,a}, determine the sets
(a) A x {1ix B.
h) (Bx A)?=(Bx A) x (B x A).



