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| Prefcc

This book is based upon lecture notes developed by Jack Kiefer for a course in
statistical inference he taught at Cornell University. The notes were distributed
to the class in lieu of a textbook, and the problems were used for homework
assignments. Relying only on modest prerequisites of probability theory and cal-
culus, Kiefer’s approach to a first course in statistics is to present the central
ideas of the modern mathematical theory with a minimum of fuss and formality.
He is able to do this by using a rich mixture of examples, pictures, and math-
ematical derivations to complement a clear and logical discussion of the important
ideas in plain English.

The straightforwardness of Kiefer’s presentation is remarkable in view of the
sophistication and depth of his examination of the major theme: How should an
intelligent person formulate a statistical problem and choose a statistical procedure
to apply to it? Kiefer's view, in the same spirit as Neyman and Wald, is that
one should try to assess the consequences of a statistical choice in some quan-
titative (frequentist) formulation and ought to choose a course of action that is
verifiably optimal (or nearly so) without regard to the perceived “attractiveness”’
of certain dogmas and methods.

Besides the centrally important decision-theoretic concepts such as admissibility
and Bayes and minimax procedures, Kiefer is concemed with providing a rational
perspective on classical approaches, such as unbiasedness, likelihood-based
methods, and linear models. He also gives thorough consideration to useful ways
of reducing and simplifying statistical problems, including sufficiency, invariance
(equivariance), and asymptotics. Many of these topics are taken up in Chapter
4, which provides both an overview and a foundation for developments in later
chapters, especially Chapters 6 and 7 on sufficiency and estimation, respectively.
Chapter 5, on linear unbiased estimation, as well as Chapters 8 and 9, on hy-
pothesis testing and confidence intervals, cover quite a bit of **standard statistical
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method”’; although many insights and helpful ideas are provided, beginners who

want to learn the usual techniques of Student’s t-tests, F-tests, and analysis of
+ variance will likely find the treatment too brief. Supplementary use of a standard

text is recommended for this purpose. The first three chapters are short and

introductory; Chapter 1, in particular, gives a clear and challenging view of what
_Kiefer has in mind. Appendix A lists some notational conventions.

Following Jack Kiefer’s death in 1981, many of his colleagues, friends, and
former students were eager to see his course notes published as a book. The
statistical community owes its thanks to the late Walter Kaufmann-Biihler, of
Springer-Verlag, for pursuing the project, and to Jack’s wife, Dooley, for agreeing
to it. In editing the notes, I have made only a few minor changes in the narrative,
concentrating instead on correcting small errors and ensuring the internal con-
sistency of the language, notation, and the many cross-references. The result, I
believe, fully preserves the style and intentions of Jack Kiefer, who communicated
his persistent idealism about the theory and practice of statistics with characteristic
warmth and enthusiasm to generations of students and colleagues. May this book
inspire future generations in the same way that Jack’s teaching inspired all of
us.

Gary Lorden
Pasadena, California
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CHAPTER 1

Introduction to Statistical Inference

A typical problem in probability theory is of the following form: A sam-
ple space and underlying probability function are specified, and we are
asked to compute the probability of a given chance event. For example,
if Xy, ..., X, are independent Bernoulli random variables with P{X, = 1}
=1 — P{X; = 0} = p, we compute that the probability of the chance event

{Zi X; = r}, where r is an integer with 0 <r <n, is (:) pr(l—pr.

In a typical problem of statistics it is not a single underlying probability
law which is specified, but rather a class of laws, any of which may possibly
be the one which actually governs the chance device or experiment whose
outcome we shall observe. We know that the underlying probability law is a
member of this class, but we do not know which one it is. The object might
then be to determine a “good” way of guessing, on the basis of the outcome
of the experiment, which of the possible underlying probability laws is the one
which actually governs the experiment whose outcome we are to observe.

ExaMPLE 1.1. We are given a coin about which we know nothing. We are
allowed to perform 10 independent flips with the coin, on each of which the
probability of getting a head is p. We do not know p, but only know that
0 < p < 1. In fact, our object might be, on the basis of what we observe on
the 10 flips, to guess what value of p dctually applies to this particular coin.
We might be professional gamblers who intend to. use this coin in our pro-
fessional capacity and who would clearly benefit from knowing whether the
coin is fair or is strongly biased toward heads or toward tails. The outcome
of the experiment cannot tell us with complete sureness the exact value of p.
But we can tryto make an accurate guess on the basis of the 10 flips we observe.

There are many ways to form such a guess. For example, we might compute
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[number of heads obtained in 10 tosses]/10 and use this as our guess. Instead, -
we might observe how many flips it took to get the first head, guessing p to
be 0 if no head comes up in 10 tosses, and to be 1/[number of toss on which
first head appears] if at least one head occurs. A third possibility is to guess
p to be n/8 or 2/3, depending on whether the number of heads in 10 tosses is
odd or even. Fourth, we might ignore the experiment entirely and always guess
p to be 1/2. You can think of many other ways to make a guess based on the
outcome of the experiment.

Which of these ways of forming a guess from the experimental data should
we actually employ? The first method suggested may seem reasonable to you.
Perhaps the second one does not seem very unreasonable either, since one
would intuitively expect to get the first head soon if p were near 1 and later
(or not at all) if p were near 0. The third method probably seems unreasonable
to you; a large or small number of heads might indicate that p is near 1 or 0,
" respectively, but the knowledge only that the number of heads is even secems
to say very little about p. The fourth method, which makes no use of the data,
may also seem foolish.

Having formed some intuitive judgment as to the advisability of using any
of these four guessing schemes, you may be asked to prove that method 1 is
better than method 3. You will probably be unable even to get started on a
proof, no matter how many of the classical works and elementary textbooks
on statistics you consult. Yet, all of these books will tell you to use method 1,
and in fact you will probably not find a reference to any other method! At best
you will find some mention of a “principle of unbiased estimation” or a
“principle of maximum likelihood” (don’t worry now about what these mean)
to justify the use of method 1, but this only transfers the inadequacy of the
discussion to another place, since you will not find any real justification of the
use of these “principles” in obtaining guessing methods. In fact, you will not
even find any satisfactory discussion of what is meant by a “good” method,
let alone a proof that method 1 really is good. .

Surely it should be possible to make precise what is meant by a “good”
guessing method and to determine which methods are good. It is possible.
Such a rational approach to the subject of statistical inference (that is, to the
subject of obtaining good guessing methods) came into being with the work
of Neyman in the 1930s and of Wald in the 1940s. Almost all of the develop-
ment of guessing methods before that time, and even a large amount of it in
recent years, proceeded on an intuitive basis. People suggested the use of
methods in many probabilistic settings because of some intuitive appeal of the
methods. We shall see that such intuitive appeal can easily lead to the use of
very bad guessing methods. :

It is unfortunate that the modern approach to statistical inference is gener-
ally ignored in elementary textbooks. Books and articles developed in the
modern spirit are ordinarily written at a slightly more advanced mathematical
level. Nevertheless, it is possible to discuss all of the important ideas of modern
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statistical inference at an accessible mathematical level, and we shall try to do
this. First we must describe the way in which a statistics problem is speci-
fied. This description can be made precise in a way that resembles the pre-
cise formulation of probability problems in terms of an underlying sample
space, probability function, and chance events whose probabilities are to be
computed.



CHAPTER 2

Specification of a Statistical Problem

We shall begin by giving a formulation of statistics problems which is general
enough to cover many cases of practical importance. Modifications will be
introduced into this formulation later, as they are needed.

We suppose that there is an experiment whose outcome the statistician can
observe. This outcome is described by a random variable or random vector
X taking on values in a space S. The probability law of X is unknown to the
statistician, but it is known that the distribution function (df) F of X is a
member of a specified class Q of di”s. Sometimes we shall find it convenient
to think of Q not as a collection of df’s F but rather as a collection of real or
vector parameter values 8, where the form of each possible F is specified
completely in terms of 6, so that a knowledge of the value taken on by the
label 6 is equivalent to a knowledge of F. The members of Q are sometimes
referred to as the possible states of nature. To emphasize which of the possible
values of F or @ is the unknown one which actually does govern the experiment
at hand, this value is sometimes referred to as the “true value of F or §,” or
the “true state of nature.”

ExaMPLE 2.1(a). In Example 1.1 (Chapter 1), we canlet X = (X, X, ..., Xyq),
where X is 1 or 0 according to whether the it® toss is a head or a tail. § consists
of the 2'° possible values of X. The class Q of possible df’s (or probability
laws) of X consists of all df’s for which the X, are independently and identically
distributed with P(X; = 1) = 6 = 1 — P(X, = 0), where 0 < 8§ < 1 (0 was called
p in Example 1.1). It is convenient to think of these df’s as being labeled by
6. It is easier to say “8 = 1/3” thap to say “the X are independently and
identically distributed with P{X, = 1} =1 — P{X, = 0} = 1/3.” Of course,
the description “8 = 1/3” can be used only because we have carefully specified
the meaning of 8 and the precise way in which it determines F.
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It is implied in our discussion of specifying a statistical problem that by
conducting an experiment the statistician can obtain some information about
the “actual state of nature” F in Q. It can often be shown by using the law of
large numbers or other asymptotic methods (like those discussed later in
Chapter 7) that if one could repeat the experiment an infinite number of times
(independent replications), then one could discover F exactly. In reality the
statistician performs only a finite number of experiments. The more experi-
ments made, the better is the approximation to performing an infinite number
of experiments.

It is frequently the case that statisticians or experimenters proceed as’
follows. We decide on an experiment and specify the statistical problem (as
described later) in terms of the experiment. We then decide whether the resuits
that would be obtained would be accurate enough. If not, we decide on a new
experiment (often involving only more replications, like flipping the coin more)
and work out the specification of a new statistical problem.

The behavior, just described, of a statistician, is often called designing an
experiment. It is an 2spect of statistics which we will not consider further. We
will in the sequel be mostly concerned with questions of how best to use the
results of experiments already decided upon.

Returning to our general considerations, we must introduce some notation.
We will want to compute various probabilities and expectations involving X
and must somehow make precise which member of Q is to be used in this
computation. Thus, in our Example 1.1, if we say, “the probability that
T X; = 4is.15,” under which of the possible underlying probability laws of X
has this probability been computed? To eliminate confusion, we shall in
general write

P {A} or P, {4}

to mean “the probability of the chance event A, computed when the underlying
probability law of X is given by F = F, (or by 8 = 6,)”. Thus, in our Example

1.1 we would write
10 10
P,{ZXi=4}=( )8“(1—0)6.
i=1 4 )

We shall extend the use of this notation to write

Priiy O DPosy
or
f Fop:Y or .f?o;Y

for the probability mass or density function of a random variable Y (which
has been defined as a function of X) when the probability law of X is given by

F = F, (or 6 = 8,). Thus, in the preceding example, if ¥ = z X;, we would

write
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Pour(d) = (140)0‘(1 — o,

We shall carry this notation over to expectations, writing
Ep,g(X) or Eag(X)
and
varg g(X) or vary g(X)

for the expectation and variance of g(X) when the probability law of X is given
by F = F, (or 6 = 6,). In our exampie, we would thus write

E,Y = 108, vary Y = 106(1 — 6).

Ve now describe the next aspect of a statistics problem which must be

specified. This is the collection of possible actions which the statistician can
take, or of possible statements which can be made, at the conclusion of the
experiment. We denote this collection by D, the decision space, its elements
being called decisions. At the conclusion of the experiment the statistician
actually only chooses one decision (takes one action, or makes one statement)
‘out of the possible choices in D. The statistician must make such a decision.

EXAMPLE 2.1(a) (continued\). In our previous example, the statistician was
* réquired to guess the value of 8. In this case, we can think of D as the set of
real numbers d satisfying0 < d < 1:

D={d:0<d<1}.
Thus, the decision “.37” stands for the statement “my guess is that 6 is .37.”

ExaMPLE 2.1(b). Suppose our gambler does not want to have a numerical guess
as to the value of 8 but only requires to know whether the coin is fair, is biased
toward heads, or is biased toward tails. In this case the space D consists of
three elements,

D= {dl’dZ’ d3},

where d, stands for “the coin is fair,” d, stands for “the coin is biased toward
heads,” and d, stands for “the coin is biased toward tails.”

Note that in both of these examples, D can be viewed as the collection of
possible answers to.a question that is asked of the statistician. (“What do you
guess @ to be?” “Is the coin fair, biased toward heads, or biased toward tails?”)

%
EXAMPLE 2.1{c). An even simpler question would be “Is the coin fair?”” We
would have

) D = {d,,d,},

where d, means “yes (the coin is fair)” and d, means “no (the coin is biased).”
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To sce how D might be regarded as the collection of possible actions rather
than statements, suppose the U.S. Mint attempted to discourage gamblers
from unfairly using its coins, by issuing only coins which were judged to be
fair. In this case, the Mint’s statistician, after experimenting with a given coin,
would either throw it into a barrel to be shipped to a bank (d,) or throw it
back into the melting pot (d,). Actually, we shall see that, in the general
theoretical approach to statistics, the practical meaning of the various ele-
ments of D as statements or actions does not affect the development at all:
once S, Q, D, and the function W (to be described later) have been specified,
we would reach the same conclusions for any interpretation of the physical
meaning of the elements of D. In two different applications for both of which
a given specification of S, Q, D, and W is appropriate, we will reach the same
conclusion regarding what statistical procedure (“guessing method”) to use,
regardless of what the applications are. The same statistical technique would
be used in conjunction with agronomical or astronomical work, provided the
possible outcomes of the experiment (S), possible probability laws (€2), mathe-
matical representation of the space of possible decisions (D), and loss function
(W) are the same in the two settings. The fact that d, stands for one physical
statement in the agronomical application and for another in the astronomical
setting does not matter.

ExaMPLE 2.1(d). Suppose that our gambler does not merely want a guess as
to the value of # which governs the coin at hand, but rather a statement of an
interval of values which is thought to include 6. In this case we can think of
each element d of D as being an interval of real numbers from d’ to d” inclusive,
where 0 < d' < d” < 1,sothat Dis the set of all such intervals; or, equivalently,
we can think of each d as being the ordered pair (d’,d”) of endpoints of an
interval. In either case, the decision d = (d’,d”) stands for the statement “My
guessis that d' < 6 < d".” A guess in this form, such as “I guess that .35 < 6 <
.4,” may not seem to be so precise as the statement “I guess that = .37,” the
latter form being that encountered in Example 2.1(a). We shall sec later that
in practice it is often more desirable to give a guess in the form of the present
example than in the form of Example 2.1(a), because of the possibility of
attaching to an interval of values a simple measure of confidence in the
statement that the underlying value # does fall in the stated interval.

In order to specify a statistical problem completely, we must state precisely
how right or wrong the various possible decisions are for each possible
underlying probability law F (or 6) of X. (We repeat that, in order to emphasize
that we are speaking of that unknown value of 6, among all possible values
of 6, which describes the distribution of X in the particular experiment now at
hand, books and articles often refer to this value as the true value of 6. This
true value may of course change when we move on to another experiment for
which S and € are exactly the same—for example, when we look at another
coin in Example 2.1.) -
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For example, in Example 2.1(c) it may be that, if the true value of 6 is fairly
close t0 .5, say .495 < 8 < .505, then we deem it correct to make decision d,
(“the coin is fair”) and incorrect to make decision d,, since if {8 — .5| < .005
the coin is judged to be close enough to fair for us to call it such. On the other
hand, if {6 — .5| > .005, we may feel that d, is to be thought of as correct and
d, as incorrect. If we judge that making a correct decision causes us to incur
no loss, whereas any incorrect decision causes us to incur the same positive
loss L as any other incorrect decision, we can write down analytically the loss
encountered if the true distribution of X is given by @ and if we make decision
d, as follows:

0 if |6-.5<.005,

Wi =
©.d,) {L otherwise;

(L if 16— .5] <005,
we.d;) = {0 otherwise,

Similarly, in any statistics problem we define W(F,d) (or W{(6,d)) to be the
loss incurred if the true distribution of X is given by F (or 8) and the statistician
makes decision d. The function W is one of the data of the problem; the loss
‘W(F,d)(or W(8, d)) which will be encountered if F (or ) is the true distribution
and decision d is made must be stated precisely for every possible F (or §) in
Q and every possible decision d in D. The reason for this is that, as we shall
see later, the choice of a good statistical procedure (guessing rule) depends on
W. A procedure which is good for one loss function W may be very poor for
another loss function which might be appropriate in other circumstances.

How do we obtain the loss function? In practice it is often difficult to judge
the relative seriousness of the various possible incorrect decisions one might
make for each possible true situation, so as to make W precise. In some settings
W can be written down in units of dollars on the basis of economic considera-
tions, but in other settings, particularly in basic scientific research, the losses
(which might be in units of “utility”) incurred by making various decisions are
difficult to make precise. For example, if an astronomer makes several mea-
surements (which include chance errors) on the basis of which he wants to
publish a guess of the distance to a certain galaxy, what is the seriousness of
misguessing the distance by 5 light-years, as compared to misguessing the
distance by only 1 light-year?

Practically speaking, the essential fact is that there are many important
practical settings where we can find one statistical procedure which is fairly
good for any of a variety of Ws whose forms are somewhat similar. From this
we can conclude that it may not be so serious if the astronomer’s judgment
as to the values of losses due to making various possible decisions is not
exactly what it should be (that is, what it would be if the astronomer could
foresee all possible future developments which might result from publishing
this distance, such as winning the Nobel Prize, or getting fired, or the United
States sending the first dog to a star,.and could determine from these the



2. Specification of a Statistical Problem 9

disutilities of all bad guesses). For as long as the loss function the astronomer
- writes down has roughly the same shape and tendencies as the loss function
he or she should be using, a statistical procedure which we determine to be
good using the astronomer’s loss function will also be good for the actual loss
function he or she should be using. We wiil indicate what this means in an
example:

EXAMPLE 2.2. Suppose the astronomer’s measurements are independent ran-
dom variables, each with normal 4 (u, 62) distribution, mean yx and variance
62, where p is the actual distance to the star. If this distance is known to be
at least h light-years but nothing else is known, we can write 8 = (u, ¢*) and

Q= {(g6%):p>ho>0}
The decision, as in Example 1.1(a), is a real number:
D={d:d>h},

the decision d = 100, msaning “I guess the distance u to be 100 light-years.”
The loss function would probably reflect the fact that the larger the amount
by which the astronomer misguesses y, the larger the loss incurred. For
example, we might have

W((u0%),d) = |u —d|
or

W((l" 62)’ d) = (I‘ - d)z’.

and you can think of many other forms of W which exhibit the same tendencies.
The important practical fact is that a certain statistical procedure (guessing
method) which is good assuming one of these forms of W will also be good for
many other W’s of similar form. We shall discuss this fact in detail later on.

Thus, in practice it.will often suffice to make a rough judgment as to the form -
of W. Such a rough judgment, and the resulting determination of a good statistical
procedure, is to be preferred greatly to the classical approach to statistics
wherein no attempt is made to determine W, but instead an “intuitively appealing”
procedure is used. We shall see that such intuition can easily lead to the use
of very poor procedures. The use of procedures which do turn out to be good
ones in certain settings is not logically justifiable on intuitive. grounds, but
only on the basis of a careful mathematical argument.

ExaMPLE 2.2 (continued). Although the same statistical procedure may be
good for many different W’s of similar form, such a procedure may be a poor
one if we are faced with a W which is quite different, and this is one reason why
even a rough judgment as to the form of W is better than the intuitive approach
which does not consider W at all. For example, suppose that underguesses of
the values of p are more serious than overguesses (they may result in giving
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the dog too little fuel). This may be reflected in a loss function such as

Au—d) if p>d,

W((u 0)d) = {d_,, if d>p

For such a loss function, we would use a different statistical procedure than
we would for the loss functions exhibited previously, which were symmetric
functions of d — u.

EXAMPLE 2.3. We shall now give an example to illustrate how W might be
determined on economic grounds. A middleman buys barrels of bolts from a
manufacturer at $15 per barrel. He can sell them to customers at $25 per
barrel, with a guarantee that a barrel contains at most 2 percent defective
bolts, the customer receiving his money back while keeping the barrel of bolts
in the event that he finds more than 2 percent defective bolts in the barrel.
(We assume the customer always discovers how many defective bolts there
are.) The middleman also has the option of selling the barrels with no guaran-
tee, at $18 per barrel. He removes a random sample of 200 bolts from each
barrel, inspecting the 200 bolts from each barrel for defectives and deciding
on the basis of this inspection whether to make the decision d, to sell that
barrel at $25 with a guarantee or the decision d, to sell it at $18 without a
guarantee. (The selling prices are for the barrels with 200 bolts removed from
each; the cost of inspection is included in the $15; the inspection procedure
destroys the inspected bolts, which therefore cannot be returned to the barrels.)
Let 6 be the (unknown) proportion of defectives in a given barrel after the
sample of 200 has been removed. If § < .02, it would be best to ship the barrel
out under a guarantee, for $25 (that is, to make decision d,); to ship it out at
$18 without a guarantee would result in making $7 less profit. On the other
hand, if 8 > .02 and the middleman makes decision d,, he will have to refund
the $25 as guaranteed and will receive nothing for the bolts; by making
decision d,, he will receive $18 in this circumstance, 8 > .02, too. His profit
(revenue minus cost) on a barrel with proportion 8 of defectives and on which
he makes decision d is thus given by the following table:

Proportion 8 of defectives in barrel

<.02 >.02
Decision made 4, $10 -$15
on barrel d, $3 $3

This being profit, we could take the values of the loss function W(8,d)
to be the negative of those just tabled. For example, W(.05,d,) = $15, and
W(01,d,) = —$3. Note that a negative loss is the same as a positive gain.
Sometimes statisticians work not with the absolute loss as exemplified
here, but rather with a quantity called the regret. For each F, the excess of
the loss W(F, d’) over the minimum possible loss for this F (incurred by making



